Donghyeon Kim , Jung-Bin Kim , Haejoon Jung , In-Ho Lee
{"title":"DNN-based algorithm for joint SIC ordering and power allocation in downlink NOMA-enabled heterogeneous networks","authors":"Donghyeon Kim , Jung-Bin Kim , Haejoon Jung , In-Ho Lee","doi":"10.1016/j.icte.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>In the heterogeneous network (HetNet) employing downlink non-orthogonal multiple access (NOMA), we focus on the non-convex optimization problem to optimize the spectral efficiency (SE) while the users satisfy the quality-of-service (QoS) requirement. In the previous work, the optimal joint successive interference cancellation and power allocation (JSPA) algorithm for maximizing SE is proposed to solve the mixed-integer non-linear programming (MINLP) problem in NOMA-enabled HetNet. However, the optimal solution requires exponential complexity by the number of base stations (BSs). Therefore, we present a deep neural network (DNN)-based algorithm for JSPA to reduce the complexity. In particular, to deal with the MINLP-based JSPA problem, we reformulate it into an equivalently simple problem that optimizes only the power consumption of BSs. Then, we introduce the unsupervised DNN-based method for JSPA to handle the simplified problem. The presented scheme yields improved SE and outage performance compared with traditional DNN-based methods. Additionally, we propose a user selection scheme with low complexity to enhance the SE of the proposed DNN-based power allocation. Through simulations, we illustrate that the suggested DNN-based scheme can attain SE performance similar to that of the optimal scheme.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1301-1307"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000754","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the heterogeneous network (HetNet) employing downlink non-orthogonal multiple access (NOMA), we focus on the non-convex optimization problem to optimize the spectral efficiency (SE) while the users satisfy the quality-of-service (QoS) requirement. In the previous work, the optimal joint successive interference cancellation and power allocation (JSPA) algorithm for maximizing SE is proposed to solve the mixed-integer non-linear programming (MINLP) problem in NOMA-enabled HetNet. However, the optimal solution requires exponential complexity by the number of base stations (BSs). Therefore, we present a deep neural network (DNN)-based algorithm for JSPA to reduce the complexity. In particular, to deal with the MINLP-based JSPA problem, we reformulate it into an equivalently simple problem that optimizes only the power consumption of BSs. Then, we introduce the unsupervised DNN-based method for JSPA to handle the simplified problem. The presented scheme yields improved SE and outage performance compared with traditional DNN-based methods. Additionally, we propose a user selection scheme with low complexity to enhance the SE of the proposed DNN-based power allocation. Through simulations, we illustrate that the suggested DNN-based scheme can attain SE performance similar to that of the optimal scheme.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.