Anam Memon , Qasim Arain , Nasrullah Pirzada , Akram Shaikh , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh
{"title":"Prior-free 3D human pose estimation in a video using limb-vectors","authors":"Anam Memon , Qasim Arain , Nasrullah Pirzada , Akram Shaikh , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh","doi":"10.1016/j.icte.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating accurate 3D human poses from a monocular video is fundamental to various computer vision tasks. Existing methods exploit 2D-to-3D pose lifting, multiview images, and depth sensors to model spatio-temporal dependencies. However, depth ambiguities, occlusions, and larger temporal receptive fields pose challenges to these approaches. To address this, we propose a novel prior-free DCNN-based 3D human pose estimation method for monocular image sequences using limb vectors. Our method comprises two subnetworks: a limb direction estimator and a limb length estimator. The limb direction estimator utilizes a fully convolutional network to model limb direction vectors across a temporal window. We show that network complexity can be significantly reduced by utilizing dilated convolutional operations and a relatively smaller receptive field while maintaining estimation accuracy. Moreover, the limb length estimator captures stable limb length estimations from a reliable frame set. Our model has shown superior performance compared to existing methods on the Human3.6M and MPI-INF-3DHP datasets.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1266-1272"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001188","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating accurate 3D human poses from a monocular video is fundamental to various computer vision tasks. Existing methods exploit 2D-to-3D pose lifting, multiview images, and depth sensors to model spatio-temporal dependencies. However, depth ambiguities, occlusions, and larger temporal receptive fields pose challenges to these approaches. To address this, we propose a novel prior-free DCNN-based 3D human pose estimation method for monocular image sequences using limb vectors. Our method comprises two subnetworks: a limb direction estimator and a limb length estimator. The limb direction estimator utilizes a fully convolutional network to model limb direction vectors across a temporal window. We show that network complexity can be significantly reduced by utilizing dilated convolutional operations and a relatively smaller receptive field while maintaining estimation accuracy. Moreover, the limb length estimator captures stable limb length estimations from a reliable frame set. Our model has shown superior performance compared to existing methods on the Human3.6M and MPI-INF-3DHP datasets.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.