{"title":"The collaborative role of K-Shell and PageRank for identifying influential nodes in complex networks","authors":"Shima Esfandiari, Seyed Mostafa Fakhrahmad","doi":"10.1016/j.physa.2024.130256","DOIUrl":null,"url":null,"abstract":"<div><div>Finding the most influential nodes in complex networks is a significant challenge with applications in various fields, including social networks, biology, and transportation systems. Many existing methods rely on different structural properties but often overlook complementary features. This paper highlights the complementary nature of K-Shell and PageRank and proposes a novel linear metric that combines them. Through extensive comparisons of 19 real-world and several artificial networks, the proposed method demonstrates superior accuracy, resolution, and computational efficiency. Evaluations against 11 state-of-the-art methods, including IDME, HGSM, and DNC, underscore the superiority of the proposed approach. Notably, the average accuracy has increased by 33.3% compared to PageRank and 23.1% compared to K-Shell, emphasizing the importance of integrating these two features.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"658 ","pages":"Article 130256"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007659","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finding the most influential nodes in complex networks is a significant challenge with applications in various fields, including social networks, biology, and transportation systems. Many existing methods rely on different structural properties but often overlook complementary features. This paper highlights the complementary nature of K-Shell and PageRank and proposes a novel linear metric that combines them. Through extensive comparisons of 19 real-world and several artificial networks, the proposed method demonstrates superior accuracy, resolution, and computational efficiency. Evaluations against 11 state-of-the-art methods, including IDME, HGSM, and DNC, underscore the superiority of the proposed approach. Notably, the average accuracy has increased by 33.3% compared to PageRank and 23.1% compared to K-Shell, emphasizing the importance of integrating these two features.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.