Meixuan Jiang , Yun Wang , Hu Shao , Ting Wu , Weiwei Sun
{"title":"Two hybrid conjugate gradient based algorithms on Riemannian manifolds with adaptive restart strategy for nonconvex optimization problems","authors":"Meixuan Jiang , Yun Wang , Hu Shao , Ting Wu , Weiwei Sun","doi":"10.1016/j.cam.2024.116452","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose two hybrid conjugate gradient algorithms for solving nonconvex optimization problems on Riemannian manifolds. The conjugate parameter of the first method extends a hybrid formula [Comput. Oper. Res. 159 (2023) 106341] from Euclidean to Riemannian spaces. The conjugate parameter of the second method integrates the Fletcher–Reeves conjugate parameter with another flexible conjugate parameter. An adaptive restart strategy is then incorporated into their respective search directions to enhance their theoretical properties and computational efficiency. As a result, both methods independently generate sufficient descent directions regardless of any stepsize strategy on Riemannian manifolds. Under typical assumptions and using the Riemannian weak Wolfe conditions to generate stepsize, the global convergence results of these two families are demonstrated. Numerical comparisons with existing methods using different Riemannian optimization scenarios verify the effectiveness of our proposed methods.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"461 ","pages":"Article 116452"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724007003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose two hybrid conjugate gradient algorithms for solving nonconvex optimization problems on Riemannian manifolds. The conjugate parameter of the first method extends a hybrid formula [Comput. Oper. Res. 159 (2023) 106341] from Euclidean to Riemannian spaces. The conjugate parameter of the second method integrates the Fletcher–Reeves conjugate parameter with another flexible conjugate parameter. An adaptive restart strategy is then incorporated into their respective search directions to enhance their theoretical properties and computational efficiency. As a result, both methods independently generate sufficient descent directions regardless of any stepsize strategy on Riemannian manifolds. Under typical assumptions and using the Riemannian weak Wolfe conditions to generate stepsize, the global convergence results of these two families are demonstrated. Numerical comparisons with existing methods using different Riemannian optimization scenarios verify the effectiveness of our proposed methods.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.