Francesco Cesarone , Rosella Giacometti , Jacopo Maria Ricci
{"title":"Outlier detection of multivariate data via the maximization of the cumulant generating function","authors":"Francesco Cesarone , Rosella Giacometti , Jacopo Maria Ricci","doi":"10.1016/j.cam.2024.116457","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose an outlier detection algorithm for multivariate data based on their projections on the directions that maximize the Cumulant Generating Function (CGF). We prove that CGF is a convex function, and we characterize the CGF maximization problem on the unit <span><math><mi>n</mi></math></span>-circle as a concave minimization problem. Then, we show that the CGF maximization approach can be interpreted as an extension of the standard principal component technique. Therefore, for validation and testing, we provide a thorough comparison of our methodology with two other projection-based approaches both on artificial and real-world financial data. Finally, we apply our method as an early detector for financial crises.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"461 ","pages":"Article 116457"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724007052","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an outlier detection algorithm for multivariate data based on their projections on the directions that maximize the Cumulant Generating Function (CGF). We prove that CGF is a convex function, and we characterize the CGF maximization problem on the unit -circle as a concave minimization problem. Then, we show that the CGF maximization approach can be interpreted as an extension of the standard principal component technique. Therefore, for validation and testing, we provide a thorough comparison of our methodology with two other projection-based approaches both on artificial and real-world financial data. Finally, we apply our method as an early detector for financial crises.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.