Distributed acoustic sensing data enhancement using an iterative dictionary learning method

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Applied Geophysics Pub Date : 2025-02-01 DOI:10.1016/j.jappgeo.2024.105603
Zhenjie Feng
{"title":"Distributed acoustic sensing data enhancement using an iterative dictionary learning method","authors":"Zhenjie Feng","doi":"10.1016/j.jappgeo.2024.105603","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed acoustic sensing (DAS) has emerged rapidly in the past decade because of its superb features in sensing the elastic wavefield via a low-cost, high-density, and high-durability manner. The compromise for the unprecedentedly high resolution of DAS is the noise effect. There exists a mixture of many types of noise, including but not limited to random ambient and strong amplitude noise. To tackle the various types of challenging noise, we propose a novel denoising framework based on the dictionary learning scheme. Dictionary learning is comparable to sparse transforms like wavelet and curvelet but outperforms all the alternatives by adaptively learning the basis functions for sparsifying seismic data. Instead of applying dictionary learning in a traditional way as widely reported in the literature, we apply a robust and sophisticated way to real DAS data so that we can best utilize the feature-learning advantages of dictionary learning without sacrificing the signal-leakage problems in traditional denoising methods, especially when it comes to very complicated and noisy DAS datasets.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"233 ","pages":"Article 105603"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124003197","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed acoustic sensing (DAS) has emerged rapidly in the past decade because of its superb features in sensing the elastic wavefield via a low-cost, high-density, and high-durability manner. The compromise for the unprecedentedly high resolution of DAS is the noise effect. There exists a mixture of many types of noise, including but not limited to random ambient and strong amplitude noise. To tackle the various types of challenging noise, we propose a novel denoising framework based on the dictionary learning scheme. Dictionary learning is comparable to sparse transforms like wavelet and curvelet but outperforms all the alternatives by adaptively learning the basis functions for sparsifying seismic data. Instead of applying dictionary learning in a traditional way as widely reported in the literature, we apply a robust and sophisticated way to real DAS data so that we can best utilize the feature-learning advantages of dictionary learning without sacrificing the signal-leakage problems in traditional denoising methods, especially when it comes to very complicated and noisy DAS datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Geophysics
Journal of Applied Geophysics 地学-地球科学综合
CiteScore
3.60
自引率
10.00%
发文量
274
审稿时长
4 months
期刊介绍: The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.
期刊最新文献
Multi-resolution seismic analysis of a cold seep from İzmir Gulf, Aegean Sea using seismic attributes Deep site characterization with full-waveform inversion of SH- and Love-waves induced by large mobile shaker Radioactivity of Outcropping Rock Formations / Iraqi Southern Desert Electrical resistivity structure of the Meizhuang geothermal field in South Poyang Depression, China, revealed by 3-D magnetotelluric inversion Seismological geothermometer. Part I: Neural network modeling of the temperature prediction from seismic velocity data at borehole depth scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1