A novel method to determine background concentrations and spatial distributions of heavy metals in soil at large scale using machine learning coupled with remote sensing-terrain attributes

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2025-01-21 DOI:10.1016/j.mex.2025.103180
Magboul M. Sulieman , Fuat Kaya , Abdullah S. Al-Farraj , Eric C. Brevik
{"title":"A novel method to determine background concentrations and spatial distributions of heavy metals in soil at large scale using machine learning coupled with remote sensing-terrain attributes","authors":"Magboul M. Sulieman ,&nbsp;Fuat Kaya ,&nbsp;Abdullah S. Al-Farraj ,&nbsp;Eric C. Brevik","doi":"10.1016/j.mex.2025.103180","DOIUrl":null,"url":null,"abstract":"<div><div>Soil heavy metals are among the most hazardous materials in the environment. Their harmful effects can extend to surrounding systems (air, plants, water), and given the appropriate conditions may ultimately have negative effects on human health. Thus, preventing pollution and protecting pristine soils and preindustrial areas from human activities that lead to the concentration of heavy metals (HMs) is a priority. Here, a novel methodology was proposed to establish background concentrations of eight soil HMs, cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn), and digitally map their spatial distributions in an area (i.e., harrats region) that has not yet been impacted by industrial activity. The proposed methodology combined measurements of the target HMs and fifty-two environmental covariates (ECOVs) derived from 2017 to 2021 Landsat 8/9 OLI and Shuttle Radar Topography Mission (SRTM)-derived terrain attributes. Random forest and stepwise multiple linear regression models were further used to digitally map the studied HMs. The methodology is important for any future environmental pollution/monitoring studies in the area and can be applied in other similar environments. Machine learning algorithms show great ability to use available environmental variables and investigate the relationships between the factors influencing HMs accumulation under a given soil environment. The proposed methodology was effective for describing HMs spatial variability in the environments investigated.</div><div><ul><li><span>•</span><span><div>The proposed method is a novel way to predict soil HMs and their spatial distribution over large areas.</div></span></li><li><span>•</span><span><div>Remote sensing/digital elevation models (DEMs)-derived ECOVs are useful for predicting and digitally mapping soil HMs, thus important for future environmental monitoring studies.</div></span></li><li><span>•</span><span><div>Explainable algorithms (i.e., RF and SMLR) are able to utilize ECOVs for HMs prediction and to establish background concentrations over large areas.</div></span></li></ul>Therefore, the combination of machine learning and RS/DEMs-based ECOVs is crucial to overcome the disadvantages of HMs determination via conventional methods.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103180"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil heavy metals are among the most hazardous materials in the environment. Their harmful effects can extend to surrounding systems (air, plants, water), and given the appropriate conditions may ultimately have negative effects on human health. Thus, preventing pollution and protecting pristine soils and preindustrial areas from human activities that lead to the concentration of heavy metals (HMs) is a priority. Here, a novel methodology was proposed to establish background concentrations of eight soil HMs, cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn), and digitally map their spatial distributions in an area (i.e., harrats region) that has not yet been impacted by industrial activity. The proposed methodology combined measurements of the target HMs and fifty-two environmental covariates (ECOVs) derived from 2017 to 2021 Landsat 8/9 OLI and Shuttle Radar Topography Mission (SRTM)-derived terrain attributes. Random forest and stepwise multiple linear regression models were further used to digitally map the studied HMs. The methodology is important for any future environmental pollution/monitoring studies in the area and can be applied in other similar environments. Machine learning algorithms show great ability to use available environmental variables and investigate the relationships between the factors influencing HMs accumulation under a given soil environment. The proposed methodology was effective for describing HMs spatial variability in the environments investigated.
  • The proposed method is a novel way to predict soil HMs and their spatial distribution over large areas.
  • Remote sensing/digital elevation models (DEMs)-derived ECOVs are useful for predicting and digitally mapping soil HMs, thus important for future environmental monitoring studies.
  • Explainable algorithms (i.e., RF and SMLR) are able to utilize ECOVs for HMs prediction and to establish background concentrations over large areas.
Therefore, the combination of machine learning and RS/DEMs-based ECOVs is crucial to overcome the disadvantages of HMs determination via conventional methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
Determination of the method of induction of mutations by gamma radiation in soybeans (Glycine max L. Merrill) for tolerance to carbonic rot produced by the fungus Macrophomina phaseolina (Tassi Goid.) Simple DNA extraction for museum beetle specimens to unlock genetic data from historical collections A new method and information system based on artificial intelligence for black flight identification Multi-criteria evaluation and multi-method analysis for appropriately selecting renewable energy sources in Colombia EMI-LTI: An enhanced integrated model for lung tumor identification using Gabor filter and ROI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1