Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2025-02-01 DOI:10.3866/PKU.WHXB202310045
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen
{"title":"Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network","authors":"Haolin Zhan ,&nbsp;Qiyuan Fang ,&nbsp;Jiawei Liu ,&nbsp;Xiaoqi Shi ,&nbsp;Xinyu Chen ,&nbsp;Yuqing Huang ,&nbsp;Zhong Chen","doi":"10.3866/PKU.WHXB202310045","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100017"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone Recent advances of functional nanomaterials for screen-printed photoelectrochemical biosensors Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications Machine learning enables the prediction of amide bond synthesis based on small datasets Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1