Recovery of chemicals and energy through thermo-chemical processing of plastic waste

IF 32 1区 工程技术 Q1 ENERGY & FUELS Progress in Energy and Combustion Science Pub Date : 2025-01-16 DOI:10.1016/j.pecs.2025.101219
Taewoo Lee , Dohee Kwon , Sangyoon Lee , Youkwan Kim , Jee Young Kim , Hocheol Song , Sungyup Jung , Jechan Lee , Yiu Fai Tsang , Ki-Hyun Kim , Eilhann E. Kwon
{"title":"Recovery of chemicals and energy through thermo-chemical processing of plastic waste","authors":"Taewoo Lee ,&nbsp;Dohee Kwon ,&nbsp;Sangyoon Lee ,&nbsp;Youkwan Kim ,&nbsp;Jee Young Kim ,&nbsp;Hocheol Song ,&nbsp;Sungyup Jung ,&nbsp;Jechan Lee ,&nbsp;Yiu Fai Tsang ,&nbsp;Ki-Hyun Kim ,&nbsp;Eilhann E. Kwon","doi":"10.1016/j.pecs.2025.101219","DOIUrl":null,"url":null,"abstract":"<div><div>To mitigate the various socioeconomic/environmental consequences associated with plastic waste, it is crucial to adopt strategic measures aimed at source reduction. In this regard, the thermo-chemical approach is a promising technical option to realize this objective within the framework of the circular economy. Such approach involves transforming plastic waste into chemicals/fuels, which contributes to the build-up of a more sustainable and resource-efficient platform. Precise control over yield and selectivity towards target chemicals (monomers, light olefins, and benzene, toluene, ethylbenzene, and xylene isomers (BTEXs)) and fuels (transportation fuels and syngas) is achievable by manipulating operating parameters for the thermo-chemical platform despite the possibly marked influence of the waste composition on product distribution. This review aims to delineate a technically viable pathway of the thermo-chemical approach with the discussion on the physico-chemical properties and compositional characteristics of plastics, technical alternatives for their recycling, and the associated environmental risks (improper disposal practices including mismanagement, landfilling, and incineration). This review helps open a new path for the development of a strategic technical approach within thermo-chemical processing to integrate different facets of plastic waste recycling. Thus, it will contribute to the realization of a closed-loop circular economy within the plastic value chain by focusing on thermo-chemical recycling of plastic waste.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"108 ","pages":"Article 101219"},"PeriodicalIF":32.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128525000115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the various socioeconomic/environmental consequences associated with plastic waste, it is crucial to adopt strategic measures aimed at source reduction. In this regard, the thermo-chemical approach is a promising technical option to realize this objective within the framework of the circular economy. Such approach involves transforming plastic waste into chemicals/fuels, which contributes to the build-up of a more sustainable and resource-efficient platform. Precise control over yield and selectivity towards target chemicals (monomers, light olefins, and benzene, toluene, ethylbenzene, and xylene isomers (BTEXs)) and fuels (transportation fuels and syngas) is achievable by manipulating operating parameters for the thermo-chemical platform despite the possibly marked influence of the waste composition on product distribution. This review aims to delineate a technically viable pathway of the thermo-chemical approach with the discussion on the physico-chemical properties and compositional characteristics of plastics, technical alternatives for their recycling, and the associated environmental risks (improper disposal practices including mismanagement, landfilling, and incineration). This review helps open a new path for the development of a strategic technical approach within thermo-chemical processing to integrate different facets of plastic waste recycling. Thus, it will contribute to the realization of a closed-loop circular economy within the plastic value chain by focusing on thermo-chemical recycling of plastic waste.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
期刊最新文献
A comprehensive review on flash point behavior of binary ignitable mixtures: Trends, influencing factors, safety and fuel design implications, and future directions End-gas autoignition and detonation in confined space Molecular dynamics modeling in catalyst layer development for PEM fuel cell Recovery of chemicals and energy through thermo-chemical processing of plastic waste Characteristics and mechanisms of as well as evaluation methods and countermeasures for thermal runaway propagation in lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1