Interfacial engineering with BN@cellulose separator to suppress dendrite growth and side reactions in aqueous zinc-ion batteries

IF 4.2 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2025-01-25 DOI:10.1016/j.elecom.2025.107882
Shin-Jeong Lee , Jeong-Hee Choi , Insung Hwang , Myung-Hyun Ryu , Kyu-Nam Jung , Hyeon-geun Cho , Je In Lee , Gumjae Park
{"title":"Interfacial engineering with BN@cellulose separator to suppress dendrite growth and side reactions in aqueous zinc-ion batteries","authors":"Shin-Jeong Lee ,&nbsp;Jeong-Hee Choi ,&nbsp;Insung Hwang ,&nbsp;Myung-Hyun Ryu ,&nbsp;Kyu-Nam Jung ,&nbsp;Hyeon-geun Cho ,&nbsp;Je In Lee ,&nbsp;Gumjae Park","doi":"10.1016/j.elecom.2025.107882","DOIUrl":null,"url":null,"abstract":"<div><div>The lifespan of aqueous zinc-ion batteries, which are promising alternatives to Li-ion batteries, is affected by the irreversibility of Zn anodes, primarily caused by Zn dendrite growth and side reactions such as hydrogen evolution and corrosion during cycling. This study introduces a strategy to regulate zinc ion flux between the Zn anode and aqueous electrolyte by coating boron nitride (BN) onto a cellulose separator using a simple doctor blade method. The resulting BN@cellulose separator effectively suppresses Zn dendrite growth and minimizes side reactions in aqueous electrolytes. Electrochemical evaluations demonstrate that the BN coating reduces interfacial corrosion and enhances electrochemical stability compared to a bare cellulose separator by regulating the zinc ion flux between the electrolyte and active Zn sites. Overall, use of the BN@cellulose separator improved the electrochemical performance and prolonged cycling stability. The proposed strategy marks a significant advancement toward enhancing the long-term reliability of aqueous zinc-ion batteries.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"172 ","pages":"Article 107882"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The lifespan of aqueous zinc-ion batteries, which are promising alternatives to Li-ion batteries, is affected by the irreversibility of Zn anodes, primarily caused by Zn dendrite growth and side reactions such as hydrogen evolution and corrosion during cycling. This study introduces a strategy to regulate zinc ion flux between the Zn anode and aqueous electrolyte by coating boron nitride (BN) onto a cellulose separator using a simple doctor blade method. The resulting BN@cellulose separator effectively suppresses Zn dendrite growth and minimizes side reactions in aqueous electrolytes. Electrochemical evaluations demonstrate that the BN coating reduces interfacial corrosion and enhances electrochemical stability compared to a bare cellulose separator by regulating the zinc ion flux between the electrolyte and active Zn sites. Overall, use of the BN@cellulose separator improved the electrochemical performance and prolonged cycling stability. The proposed strategy marks a significant advancement toward enhancing the long-term reliability of aqueous zinc-ion batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用BN@cellulose分离器抑制锌离子电池枝晶生长和副反应的界面工程
水溶液锌离子电池是锂离子电池的有前途的替代品,其寿命受到锌阳极的不可逆性的影响,主要是由锌枝晶生长和循环过程中的析氢和腐蚀等副反应引起的。本文介绍了一种通过在纤维素分离器上涂覆氮化硼(BN)来调节锌阳极与水溶液电解质之间锌离子通量的方法。由此产生的BN@cellulose分离器有效地抑制Zn枝晶的生长,并最大限度地减少水溶液中的副反应。电化学评价表明,与裸纤维素分离器相比,BN涂层通过调节电解质和活性锌位点之间的锌离子通量,减少了界面腐蚀,提高了电化学稳定性。总体而言,BN@cellulose分离器的使用提高了电化学性能和延长了循环稳定性。提出的策略标志着在提高水性锌离子电池的长期可靠性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
The effect of voltage on accuracy in electrochemical micromachining under two-tone sinusoidal signal Advancements in lithium-ion battery materials for thermal runaway prevention A periodic reactivation strategy with redox mediator towards dead Lithium-free Lithium metal batteries Voltage optimization strategy to reduce electric field non-uniformity and improve efficiency in electrodialysis systems Lithium deposition-guided pore stabilization in bioprotein separators: Insights from synchrotron radiation ultra-small angle X-ray scattering evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1