{"title":"ArtEyer: Enriching GPT-based agents with contextual data visualizations for fine art authentication","authors":"Tan Tang , Yanhong Wu , Junming Gao , Kejia Ruan , Yanjie Zhang , Shuainan Ye , Yingcai Wu , Xiaojiao Chen","doi":"10.1016/j.visinf.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Fine art authentication plays a significant role in protecting cultural heritage and ensuring the integrity of artworks. Traditional authentication methods require professionals to collect many reference materials and conduct detailed analyses. To ease the difficulty, we collaborate with domain experts to develop a GPT-based agent, namely ArtEyer, that offers accurate attributions, determines the origin and authorship, and executes visual analytics. Despite the convenience of the conversational user interface, novice users may still face challenges due to the hallucination issue and the steep learning curve associated with prompting. To face these obstacles, we propose a novel solution that places interactive data visualizations into the conversations. We create contextual visualizations from an external domain-dependent database to ensure data trustworthiness and allow users to provide precise instructions to the agent by interacting directly with these visualizations, thus overcoming the vagueness inherent in natural language-based prompting. We evaluate ArtEyer through an in-lab user study and demonstrate its usage with a real-world case.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 4","pages":"Pages 48-59"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000664","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fine art authentication plays a significant role in protecting cultural heritage and ensuring the integrity of artworks. Traditional authentication methods require professionals to collect many reference materials and conduct detailed analyses. To ease the difficulty, we collaborate with domain experts to develop a GPT-based agent, namely ArtEyer, that offers accurate attributions, determines the origin and authorship, and executes visual analytics. Despite the convenience of the conversational user interface, novice users may still face challenges due to the hallucination issue and the steep learning curve associated with prompting. To face these obstacles, we propose a novel solution that places interactive data visualizations into the conversations. We create contextual visualizations from an external domain-dependent database to ensure data trustworthiness and allow users to provide precise instructions to the agent by interacting directly with these visualizations, thus overcoming the vagueness inherent in natural language-based prompting. We evaluate ArtEyer through an in-lab user study and demonstrate its usage with a real-world case.