{"title":"One-dimensional C/Co composite nanofibers derived from ZIF-67 with excellent wideband electromagnetic microwave absorption performance","authors":"Danqiang Huang , Xiangyun Zhang , Jianfeng Dai , Zizhou Yuan","doi":"10.1016/j.colsurfa.2024.135910","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of wireless communications, radar systems, and electronic devices has resulted in a substantial increase in electromagnetic interference (EMI), which poses a threat to electronic device performance and human health. This study addresses the urgent need for lightweight materials with strong absorption capacities, wide absorption bandwidths, and low thickness values. For this purpose, ZIF-67-derived C/Co nanofibers were synthesized via electrospinning, dipping, and high-temperature carbonization. Co<sup>2+</sup> ions were pre-anchored and encapsulated in polyacrylonitrile (PAN) fibers and are grown by immersion in an organic ligand. Utilizing 0.4 g of cobalt nitrate hexahydrate, the amount of encapsulated Co<sup>2+</sup> was optimized to provide the greatest electromagnetic wave absorption performance. Under these conditions, the reflection loss was −49.45 dB, and the maximum effective absorption bandwidth was 6.48 GHz, thereby covering the entire Ku band. The composite material demonstrated a significant improvement in impedance matching and electromagnetic wave dissipation, which was attributed to the uniform dispersion of Co particles and the formation of multi-component heterogeneous interfaces. This study presents a pragmatic method for creating high-performance materials that could potentially reduce electromagnetic interference (EMI) in the aerospace, telecommunications, and defense sectors.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135910"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724027742","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of wireless communications, radar systems, and electronic devices has resulted in a substantial increase in electromagnetic interference (EMI), which poses a threat to electronic device performance and human health. This study addresses the urgent need for lightweight materials with strong absorption capacities, wide absorption bandwidths, and low thickness values. For this purpose, ZIF-67-derived C/Co nanofibers were synthesized via electrospinning, dipping, and high-temperature carbonization. Co2+ ions were pre-anchored and encapsulated in polyacrylonitrile (PAN) fibers and are grown by immersion in an organic ligand. Utilizing 0.4 g of cobalt nitrate hexahydrate, the amount of encapsulated Co2+ was optimized to provide the greatest electromagnetic wave absorption performance. Under these conditions, the reflection loss was −49.45 dB, and the maximum effective absorption bandwidth was 6.48 GHz, thereby covering the entire Ku band. The composite material demonstrated a significant improvement in impedance matching and electromagnetic wave dissipation, which was attributed to the uniform dispersion of Co particles and the formation of multi-component heterogeneous interfaces. This study presents a pragmatic method for creating high-performance materials that could potentially reduce electromagnetic interference (EMI) in the aerospace, telecommunications, and defense sectors.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.