Heng Zhang , Jiayi Li , Niujia Sun , Hua Li , Qin Hang
{"title":"MRCNN: Multi-input residual convolution neural network for three-dimensional reconstruction of bubble flows from light field images","authors":"Heng Zhang , Jiayi Li , Niujia Sun , Hua Li , Qin Hang","doi":"10.1016/j.net.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate measurement of bubbles in air-water two-phase flows holds immense significance in the realm of thermal hydraulics assessments within nuclear reactors. Nevertheless, conventional bubble measurement techniques grapple with challenges encompassing system intricacy, limited real-time capabilities, and inaccuracies stemming from their inherent two-dimensional (2-D) nature. In response, we pioneered an innovative three-dimensional (3-D) analysis approach that leverages light field (LF) imaging diagnosis and deep learning algorithms. Unlike traditional 2-D reconstruction methods, our approach enables direct computation of bubble depth from LF images using digital refocusing technology. Following calibration, a seamless transformation is established between the camera coordinate system and the real-world coordinate system using a sharpness evaluation algorithm. This calibration process ensures precise alignment of refocused images with real-world positions. Subsequently, fully automated and highly accurate computations of bubble depth are realized from input images via the incorporation of a multi-input residual convolution neural network (MRCNN). The limitations of traditional two-dimensional imaging techniques are effectively addressed by this methodology, resulting in a reduction in measurement errors. The study confirms the feasibility of employing LF imaging diagnosis and deep learning algorithms for bubble measurements in an air-water two-phase flow, offering a significant improvement over traditional methods.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 2","pages":"Article 103210"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004595","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate measurement of bubbles in air-water two-phase flows holds immense significance in the realm of thermal hydraulics assessments within nuclear reactors. Nevertheless, conventional bubble measurement techniques grapple with challenges encompassing system intricacy, limited real-time capabilities, and inaccuracies stemming from their inherent two-dimensional (2-D) nature. In response, we pioneered an innovative three-dimensional (3-D) analysis approach that leverages light field (LF) imaging diagnosis and deep learning algorithms. Unlike traditional 2-D reconstruction methods, our approach enables direct computation of bubble depth from LF images using digital refocusing technology. Following calibration, a seamless transformation is established between the camera coordinate system and the real-world coordinate system using a sharpness evaluation algorithm. This calibration process ensures precise alignment of refocused images with real-world positions. Subsequently, fully automated and highly accurate computations of bubble depth are realized from input images via the incorporation of a multi-input residual convolution neural network (MRCNN). The limitations of traditional two-dimensional imaging techniques are effectively addressed by this methodology, resulting in a reduction in measurement errors. The study confirms the feasibility of employing LF imaging diagnosis and deep learning algorithms for bubble measurements in an air-water two-phase flow, offering a significant improvement over traditional methods.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development