Microstructure and properties of the Al-0.5 wt.% Fe alloy wire, copper-clad by electrochemical deposition

A.E. Medvedev , K.E. Kiryanova , E.B. Medvedev , M.V. Gorbatkov , M.M. Motkov
{"title":"Microstructure and properties of the Al-0.5 wt.% Fe alloy wire, copper-clad by electrochemical deposition","authors":"A.E. Medvedev ,&nbsp;K.E. Kiryanova ,&nbsp;E.B. Medvedev ,&nbsp;M.V. Gorbatkov ,&nbsp;M.M. Motkov","doi":"10.1016/j.ijlmm.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the microstructure, mechanical and electrical properties of the copper-clad wires with a core of Al-0.5Fe alloy, obtained by casting into an electromagnetic crystallizer (EMC). The outer copper layer with a thickness of 90 ± 10 μm was applied via electrochemical deposition. Copper cladding of the aluminum wire leads to (without loss of strength and electrical conductivity) a decrease in the ductility to the value less than 2% which is the minimal recommended level of the elongation to failure for the commercially used aluminium alloys. Such drop in ductility also results in the shift of the fracture type to a brittle one. The cause of brittle fracture is the presence of a transition nickel layer required by the technological process of the electrochemical deposition of copper onto aluminium alloy. Annealing at 300 °C for 1 h leads to recovery of the ductility to the original level (4.3% for the cold-drawn Al-0.5Fe alloy wires) with a slight decrease in the ultimate tensile strength to 184 MPa and an increase in the specific electrical conductivity of the bimetallic wire to 60.9%IACS, as well as a change in fracture behavior to ductile. This method is promising for creating the bimetallic aluminum wires with a thin copper layer of controlled thickness and chemical composition to produce conductive elements in which the skin effect could be realized.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 1","pages":"Pages 28-37"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the microstructure, mechanical and electrical properties of the copper-clad wires with a core of Al-0.5Fe alloy, obtained by casting into an electromagnetic crystallizer (EMC). The outer copper layer with a thickness of 90 ± 10 μm was applied via electrochemical deposition. Copper cladding of the aluminum wire leads to (without loss of strength and electrical conductivity) a decrease in the ductility to the value less than 2% which is the minimal recommended level of the elongation to failure for the commercially used aluminium alloys. Such drop in ductility also results in the shift of the fracture type to a brittle one. The cause of brittle fracture is the presence of a transition nickel layer required by the technological process of the electrochemical deposition of copper onto aluminium alloy. Annealing at 300 °C for 1 h leads to recovery of the ductility to the original level (4.3% for the cold-drawn Al-0.5Fe alloy wires) with a slight decrease in the ultimate tensile strength to 184 MPa and an increase in the specific electrical conductivity of the bimetallic wire to 60.9%IACS, as well as a change in fracture behavior to ductile. This method is promising for creating the bimetallic aluminum wires with a thin copper layer of controlled thickness and chemical composition to produce conductive elements in which the skin effect could be realized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Machine learning in additive manufacturing: A comprehensive insight Experimental performance evaluation of a lightweight additively manufactured hydrodynamic thrust bearing Editorial Board Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1