Wood flour / ceramic reinforced polylactic acid based 3D–printed functionally grade structural material for integrated engineering applications: A numerical and experimental characteristic investigation

Arunkumar Thirugnanasamabandam , B. Prabhu , Varsha Mageswari , V. Murugan , Karthikeyan Ramachandran , Kumaran Kadirgama
{"title":"Wood flour / ceramic reinforced polylactic acid based 3D–printed functionally grade structural material for integrated engineering applications: A numerical and experimental characteristic investigation","authors":"Arunkumar Thirugnanasamabandam ,&nbsp;B. Prabhu ,&nbsp;Varsha Mageswari ,&nbsp;V. Murugan ,&nbsp;Karthikeyan Ramachandran ,&nbsp;Kumaran Kadirgama","doi":"10.1016/j.ijlmm.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, efforts have been done to capitalize on the potential of multidisciplinary research in order to produce unique features in polymer technology. To improve its physical and chemical properties for any intended use, the most promising Polylactic acid (PLA) has recently been copolymerized using other polymeric or non-polymeric components. This investigation aims to employ the material extrusion (MEX) process to develop a new functionally grade structural material (FGSM) by alternate layer deposition of wood flour reinforced PLA (WPLA) and ceramic reinforced PLA (CPLA). The mechanical properties of the printed laminates are examined using tensile, compression and three point bend tests. The microscopic investigation is used to assess fracture morphologies. A numerical simulation is also performed using ABAQUS under standardized parametric settings to investigate the mechanical behaviour of the laminates. The experimental and numerical results are consistent, with a deviation about ∼1 %. The tensile, compressive, and flexural strength of the newly developed FGSM are 61.39, 95.4, and 107.8 % higher than those of WPLA printed laminates. Furthermore, the acquired mechanical behaviour results are merely comparable to those of CPLA printed laminates. DSC thermograms demonstrate that FGSM has a better glass transition temperature (66°C) and a cold crystalline temperature (87.63°C), which contributes to its thermal stability. Overall, the newly developed FGSM might be considered a viable alternative, mechanically strong, and less expensive polymer composite material for structural built applications in any engineering and related fields.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 1","pages":"Pages 74-86"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, efforts have been done to capitalize on the potential of multidisciplinary research in order to produce unique features in polymer technology. To improve its physical and chemical properties for any intended use, the most promising Polylactic acid (PLA) has recently been copolymerized using other polymeric or non-polymeric components. This investigation aims to employ the material extrusion (MEX) process to develop a new functionally grade structural material (FGSM) by alternate layer deposition of wood flour reinforced PLA (WPLA) and ceramic reinforced PLA (CPLA). The mechanical properties of the printed laminates are examined using tensile, compression and three point bend tests. The microscopic investigation is used to assess fracture morphologies. A numerical simulation is also performed using ABAQUS under standardized parametric settings to investigate the mechanical behaviour of the laminates. The experimental and numerical results are consistent, with a deviation about ∼1 %. The tensile, compressive, and flexural strength of the newly developed FGSM are 61.39, 95.4, and 107.8 % higher than those of WPLA printed laminates. Furthermore, the acquired mechanical behaviour results are merely comparable to those of CPLA printed laminates. DSC thermograms demonstrate that FGSM has a better glass transition temperature (66°C) and a cold crystalline temperature (87.63°C), which contributes to its thermal stability. Overall, the newly developed FGSM might be considered a viable alternative, mechanically strong, and less expensive polymer composite material for structural built applications in any engineering and related fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Machine learning in additive manufacturing: A comprehensive insight Experimental performance evaluation of a lightweight additively manufactured hydrodynamic thrust bearing Editorial Board Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1