{"title":"Quantum and thermal pressures from light scalar fields","authors":"Hauke Fischer, Christian Käding, Mario Pitschmann","doi":"10.1016/j.dark.2024.101756","DOIUrl":null,"url":null,"abstract":"<div><div>Light scalar fields play a variety of roles in modern physics, especially in cosmology and modified theories of gravity. For this reason, there is a zoo of experiments actively trying to find evidence for many scalar field models that have been proposed in theoretical considerations. Among those are setups in which the pressures expected to be induced by light scalar fields between two parallel plates are studied, for example, Casimir force experiments. While it is known that classical and quantum pressures caused by light scalar fields could have significant impacts on such experiments, in this article, we show that this can also be the case for thermal pressure. More specifically, we derive expressions for the quantum and thermal pressures induced by exchanges of light scalar field fluctuations between two thin parallel plates. As particular examples, we then look at screened scalar fields. For chameleon, symmetron and environment-dependent dilaton models, we find large regions in their parameter spaces that allow for thermal pressures to equal or exceed the quantum pressures. By comparing with earlier constraints from quantum pressure calculations, we conclude that thermal pressures induced by chameleons are actually of experimental significance.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101756"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221268642400339X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Light scalar fields play a variety of roles in modern physics, especially in cosmology and modified theories of gravity. For this reason, there is a zoo of experiments actively trying to find evidence for many scalar field models that have been proposed in theoretical considerations. Among those are setups in which the pressures expected to be induced by light scalar fields between two parallel plates are studied, for example, Casimir force experiments. While it is known that classical and quantum pressures caused by light scalar fields could have significant impacts on such experiments, in this article, we show that this can also be the case for thermal pressure. More specifically, we derive expressions for the quantum and thermal pressures induced by exchanges of light scalar field fluctuations between two thin parallel plates. As particular examples, we then look at screened scalar fields. For chameleon, symmetron and environment-dependent dilaton models, we find large regions in their parameter spaces that allow for thermal pressures to equal or exceed the quantum pressures. By comparing with earlier constraints from quantum pressure calculations, we conclude that thermal pressures induced by chameleons are actually of experimental significance.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.