Minglan Xiong , Huawei Wang , Zhaoguo Hou , Yiik Diew Wong
{"title":"Multi-level information identification for civil aviation safety risks: A hierarchical multi-branch deep learning approach","authors":"Minglan Xiong , Huawei Wang , Zhaoguo Hou , Yiik Diew Wong","doi":"10.1016/j.ins.2025.121888","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning techniques have been widely applied in the study of risk assessment and prediction in civil aviation safety, as they can effectively learn patterns and rules from aviation safety data. However, the task becomes more challenging when addressing the hierarchical structure of aviation safety risk identification. In this context, a hierarchical branching (HB) structure endows risk identification models with stepwise decision-making capabilities. This study proposes a hierarchical multi-branch deep learning approach which integrates Convolutional Neural Networks-Bidirectional Long Short-Term Memory (CNN-BiLSTM) blocks into HB to form the HB-CNN-BiLSTM (HCBL) model for identifying multi-level civil aviation safety risk information. The proposed method simultaneously facilitates safety hazards detection, hazard attribute identification, and risk level assessment, thereby capturing finer-grained risk patterns and relationships. Comparative experiments were conducted on different civil aviation safety datasets. Experimental results show that the combination is efficient and robust.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"702 ","pages":"Article 121888"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525000209","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning techniques have been widely applied in the study of risk assessment and prediction in civil aviation safety, as they can effectively learn patterns and rules from aviation safety data. However, the task becomes more challenging when addressing the hierarchical structure of aviation safety risk identification. In this context, a hierarchical branching (HB) structure endows risk identification models with stepwise decision-making capabilities. This study proposes a hierarchical multi-branch deep learning approach which integrates Convolutional Neural Networks-Bidirectional Long Short-Term Memory (CNN-BiLSTM) blocks into HB to form the HB-CNN-BiLSTM (HCBL) model for identifying multi-level civil aviation safety risk information. The proposed method simultaneously facilitates safety hazards detection, hazard attribute identification, and risk level assessment, thereby capturing finer-grained risk patterns and relationships. Comparative experiments were conducted on different civil aviation safety datasets. Experimental results show that the combination is efficient and robust.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.