{"title":"Imprints of quantum gravity on periastron precession and trajectories around a black hole","authors":"Asifa Ashraf , Abdelmalek Bouzenada , S.K. Maurya , Farruh Atamurotov , Phongpichit Channuie , Assmaa Abd-Elmonem , Nesreen Sirelkhtam Elmki Abdalla","doi":"10.1016/j.dark.2024.101787","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the motion of test particles around a spherically symmetric, non-rotating black hole within the framework of quantum gravity, emphasizing the impact of model parameters on particle dynamics. The black hole is characterized by its mass <span><math><mi>M</mi></math></span> and two dimensionless parameters, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. Using the effective potential method, we analyze the stability of circular orbits and derive analytical expressions for the energy and angular momentum of test particles as functions of the black hole parameters. Additionally, we examine effective forces, determine the innermost stable circular orbits, and numerically integrate the equations of motion to study diverse particle trajectories. Analytical formulas for radial, vertical, and orbital frequencies, as well as the periastron precession frequency, are found from the exploration of epicyclic oscillations close to the equatorial plane. Lastly, we determine the center-of-mass energy for particle collisions close to the black hole horizon. Our results provide insights into the interaction between quantum gravity effects and black hole dynamics, explaining the substantial influence of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> on particle motion.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101787"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424003704","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the motion of test particles around a spherically symmetric, non-rotating black hole within the framework of quantum gravity, emphasizing the impact of model parameters on particle dynamics. The black hole is characterized by its mass and two dimensionless parameters, and . Using the effective potential method, we analyze the stability of circular orbits and derive analytical expressions for the energy and angular momentum of test particles as functions of the black hole parameters. Additionally, we examine effective forces, determine the innermost stable circular orbits, and numerically integrate the equations of motion to study diverse particle trajectories. Analytical formulas for radial, vertical, and orbital frequencies, as well as the periastron precession frequency, are found from the exploration of epicyclic oscillations close to the equatorial plane. Lastly, we determine the center-of-mass energy for particle collisions close to the black hole horizon. Our results provide insights into the interaction between quantum gravity effects and black hole dynamics, explaining the substantial influence of and on particle motion.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.