MASK_LOSS guided non-end-to-end image denoising network based on multi-attention module with bias rectified linear unit and absolute pooling unit

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2025-02-01 DOI:10.1016/j.cviu.2025.104302
Jing Zhang , Jingcheng Yu , Zhicheng Zhang , Congyao Zheng , Yao Le , Yunsong Li
{"title":"MASK_LOSS guided non-end-to-end image denoising network based on multi-attention module with bias rectified linear unit and absolute pooling unit","authors":"Jing Zhang ,&nbsp;Jingcheng Yu ,&nbsp;Zhicheng Zhang ,&nbsp;Congyao Zheng ,&nbsp;Yao Le ,&nbsp;Yunsong Li","doi":"10.1016/j.cviu.2025.104302","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based image denoising algorithms have demonstrated superior denoising performance but suffer from loss of details and excessive smoothing of edges after denoising. In addition, these denoising models often involve redundant calculations, resulting in low utilization rates and poor generalization capabilities. To address these challenges, we proposes an Non-end-to-end Multi-Attention Denoising Network (N-ete MADN). Firstly, we propose a Bias Rectified Linear Unit (BReLU) to replace ReLU as the activation function, which provides enhanced flexibility and expanded activation range without additional computation, constructing a Feature Extraction Unit (FEU) with depth-wise convolutions (DConv). Then an Absolute Pooling Unit (AbsPooling-unit) is proposed to consist Channel Attention Block(CAB), Spatial Attention Block(SAB) and Channel Similarity Attention Block (CSAB) , which are integrated into a Multi-Attention Module (MAM). CAB and SAB aim to enhance the model’s focus on key information respectively in the spatial dimension and the channel dimension, while CSAB aims to improve the model’s ability to detect similar features. Finally, the MAM is utilized to construct a Multi-Attention Denoising Network (MADN). Then a mask loss function (MASK_LOSS) and a compound multi-stage denoising network called Non-end-to-end Multi-Attention Denoising Network (N-ete MADN) based on the loss and MADN are proposed, which aim to handle the image with rich edge information, providing enhanced protection for edges and facilitating the reconstruction of edge information after image denoising. This framework enhances learning capacity and efficiency, effectively addressing edge detail loss challenges in denoising tasks. Experimental results on both synthetic several datasets demonstrate that our model can achieve the state-of-the-art denoising performance with low computational costs.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"252 ","pages":"Article 104302"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000256","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based image denoising algorithms have demonstrated superior denoising performance but suffer from loss of details and excessive smoothing of edges after denoising. In addition, these denoising models often involve redundant calculations, resulting in low utilization rates and poor generalization capabilities. To address these challenges, we proposes an Non-end-to-end Multi-Attention Denoising Network (N-ete MADN). Firstly, we propose a Bias Rectified Linear Unit (BReLU) to replace ReLU as the activation function, which provides enhanced flexibility and expanded activation range without additional computation, constructing a Feature Extraction Unit (FEU) with depth-wise convolutions (DConv). Then an Absolute Pooling Unit (AbsPooling-unit) is proposed to consist Channel Attention Block(CAB), Spatial Attention Block(SAB) and Channel Similarity Attention Block (CSAB) , which are integrated into a Multi-Attention Module (MAM). CAB and SAB aim to enhance the model’s focus on key information respectively in the spatial dimension and the channel dimension, while CSAB aims to improve the model’s ability to detect similar features. Finally, the MAM is utilized to construct a Multi-Attention Denoising Network (MADN). Then a mask loss function (MASK_LOSS) and a compound multi-stage denoising network called Non-end-to-end Multi-Attention Denoising Network (N-ete MADN) based on the loss and MADN are proposed, which aim to handle the image with rich edge information, providing enhanced protection for edges and facilitating the reconstruction of edge information after image denoising. This framework enhances learning capacity and efficiency, effectively addressing edge detail loss challenges in denoising tasks. Experimental results on both synthetic several datasets demonstrate that our model can achieve the state-of-the-art denoising performance with low computational costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Monocular per-object distance estimation with Masked Object Modeling Editorial Board Corrigendum to “LightSOD: Towards lightweight and efficient network for salient object detection” [J. Comput. Vis. Imag. Underst. 249 (2024) 104148] Guided image filtering-conventional to deep models: A review and evaluation study Learning to mask and permute visual tokens for Vision Transformer pre-training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1