{"title":"Montmorillonite-enhanced micro- and nanocomposites for targeted and controlled oral drug delivery systems","authors":"Zhenping Xiao , Xuemin Gu , Ji Huang , Liangzhe Liu , Siying Yuan , Peng Jiang , Yangrong Zhang , Yingshan Zhao , Shijie Wei , Qi Tao , Dongzhi Hou","doi":"10.1016/j.clay.2025.107713","DOIUrl":null,"url":null,"abstract":"<div><div>Oral drug delivery systems (ODDSs) offer numerous advantages, such as convenient administration, high patient adherence, and cost-effectiveness. However, challenges like enzyme barriers and first-pass metabolism limit their effectiveness, and traditional methods often lack features for controlled release and targeted delivery, tending to cause severe systemic toxic side effects. Recent advancements in drug delivery have introduced alternative delivery vehicles. Montmorillonite (Mt), an FDA-approved biocompatible nanomaterial, stands out due to its high specific surface area, ideal adsorption capacity and cation exchange properties. This review explores preparation, modification, and application of Mt-based micro- and nanocomposites (MNCs) for ODDSs. Drugs encapsulated in Mt-based MNCs are shielded from the gastrointestinal environment, facilitating delayed and targeted drug release and enhancing drug bioavailability. The paper provides insights into the rational selection of Mt-based MNCs for advanced ODDSs, highlighting their potential to overcome limitations of traditional drug delivery systems.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"267 ","pages":"Article 107713"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000183","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oral drug delivery systems (ODDSs) offer numerous advantages, such as convenient administration, high patient adherence, and cost-effectiveness. However, challenges like enzyme barriers and first-pass metabolism limit their effectiveness, and traditional methods often lack features for controlled release and targeted delivery, tending to cause severe systemic toxic side effects. Recent advancements in drug delivery have introduced alternative delivery vehicles. Montmorillonite (Mt), an FDA-approved biocompatible nanomaterial, stands out due to its high specific surface area, ideal adsorption capacity and cation exchange properties. This review explores preparation, modification, and application of Mt-based micro- and nanocomposites (MNCs) for ODDSs. Drugs encapsulated in Mt-based MNCs are shielded from the gastrointestinal environment, facilitating delayed and targeted drug release and enhancing drug bioavailability. The paper provides insights into the rational selection of Mt-based MNCs for advanced ODDSs, highlighting their potential to overcome limitations of traditional drug delivery systems.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...