Oxalate-derived NiO@NiAl-layered double hydroxide core-shell material for supercapacitors

IF 5.8 2区 地球科学 Q2 CHEMISTRY, PHYSICAL Applied Clay Science Pub Date : 2025-01-28 DOI:10.1016/j.clay.2025.107715
Hong-Li Yue, Hong-Yan Zeng, Wei Yan, Chao-Wei Luo, Zi-Feng Tian, Kai-Wen Xu
{"title":"Oxalate-derived NiO@NiAl-layered double hydroxide core-shell material for supercapacitors","authors":"Hong-Li Yue,&nbsp;Hong-Yan Zeng,&nbsp;Wei Yan,&nbsp;Chao-Wei Luo,&nbsp;Zi-Feng Tian,&nbsp;Kai-Wen Xu","doi":"10.1016/j.clay.2025.107715","DOIUrl":null,"url":null,"abstract":"<div><div>NiO as an appealing electrode material has been used for supercapacitors due to its high theoretical capacity and easy availability, but intrinsically low electrical conductivity and insufficient redox active sites restrict its further applications. In this work, a novel oxalate-derived NiO@NiAl-layered double hydroxide (LDH) with 3D core-shell structure (denoted as NiO<sub>OA</sub>@LDH) was prepared via hydrothermal calcination method, where the oxalate-derived porous C-doping NiO (NiO<sub>OA</sub>) grown on nickel foam (NF) was constructed using NiC<sub>2</sub>O<sub>4</sub> as a sacrificial template and carbon source. The deposition of the ultrathin NiAl-LDH nanosheets on the NiO<sub>OA</sub> was conducive to forming robust adhesion between the core and the shell, which promoted effective electron/ion transfer and structure stability. Benefiting from the unique 3D core-shell structure and complementary compositional features, the NiO<sub>OA</sub>@LDH gave a high specific charge of 1347.0C g<sup>−1</sup> at 1 A g<sup>−1</sup>, prominent rate performance (68.5 % retention at 15 A g<sup>−1</sup>) and cycle stability (91.1 % retention at 5 A g<sup>−1</sup> after 5000 cycles). Furthermore, the as-assembled NiO<sub>OA</sub>@LDH//activated carbon (AC) device achieved a high energy density of 45.6 Wh kg<sup>−1</sup> at a power density of 557.8 W kg<sup>−1</sup> and an outstanding cycle stability (93.1 % retention at 5 A g<sup>−1</sup> after 10,000 cycles).</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"267 ","pages":"Article 107715"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000201","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

NiO as an appealing electrode material has been used for supercapacitors due to its high theoretical capacity and easy availability, but intrinsically low electrical conductivity and insufficient redox active sites restrict its further applications. In this work, a novel oxalate-derived NiO@NiAl-layered double hydroxide (LDH) with 3D core-shell structure (denoted as NiOOA@LDH) was prepared via hydrothermal calcination method, where the oxalate-derived porous C-doping NiO (NiOOA) grown on nickel foam (NF) was constructed using NiC2O4 as a sacrificial template and carbon source. The deposition of the ultrathin NiAl-LDH nanosheets on the NiOOA was conducive to forming robust adhesion between the core and the shell, which promoted effective electron/ion transfer and structure stability. Benefiting from the unique 3D core-shell structure and complementary compositional features, the NiOOA@LDH gave a high specific charge of 1347.0C g−1 at 1 A g−1, prominent rate performance (68.5 % retention at 15 A g−1) and cycle stability (91.1 % retention at 5 A g−1 after 5000 cycles). Furthermore, the as-assembled NiOOA@LDH//activated carbon (AC) device achieved a high energy density of 45.6 Wh kg−1 at a power density of 557.8 W kg−1 and an outstanding cycle stability (93.1 % retention at 5 A g−1 after 10,000 cycles).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级电容器用草酸盐衍生NiO@NiAl-layered双氢氧化物核壳材料
NiO作为一种极具吸引力的超级电容器电极材料,由于其理论容量高且易于获得,但其固有的低导电性和氧化还原活性位点不足限制了其进一步的应用。本文以NiC2O4为牺牲模板和碳源,在泡沫镍(NF)上生长草酸盐衍生的多孔掺杂碳纳米管NiO (NiOOA),通过水热煅烧法制备了具有三维核壳结构(NiOOA@LDH)的新型草酸盐衍生的NiO@NiAl-layered双氢氧化物(LDH)。在NiOOA上沉积超薄NiAl-LDH纳米片有利于形成核壳之间牢固的粘附,促进了有效的电子/离子转移和结构稳定性。得益于独特的三维核壳结构和互补的组成特征,NiOOA@LDH在1 a g−1下具有1347.0C g−1的高比电荷,突出的速率性能(在15 a g−1下保持68.5%)和循环稳定性(在5000次循环后保持91.1%)。此外,组装后的NiOOA@LDH//活性炭(AC)装置在557.8 W kg - 1的功率密度下实现了45.6 Wh kg - 1的高能量密度,并且具有出色的循环稳定性(在10000次循环后,在5 a g - 1下保持93.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
期刊最新文献
Experimental and molecular modeling study of CO adsorption on modified sepiolite Rheology of calcined illitic and smectitic clays in cement-free aqueous solutions with a focus on ion adsorption and superplasticizer interaction Editorial Board Mineral assemblages with smectites in simulated basalt alteration: implications for Martian aqueous environments High-pressure structural evolution of talc investigated by X-ray diffraction, infrared spectroscopy, and density functional theory calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1