Xuhui Chang, Junhai Zhai, Shaoxin Qiu, Zhengrong Sun
{"title":"Rebalanced supervised contrastive learning with prototypes for long-tailed visual recognition","authors":"Xuhui Chang, Junhai Zhai, Shaoxin Qiu, Zhengrong Sun","doi":"10.1016/j.cviu.2025.104291","DOIUrl":null,"url":null,"abstract":"<div><div>In the real world, data often follows a long-tailed distribution, resulting in head classes receiving more attention while tail classes are frequently overlooked. Although supervised contrastive learning (SCL) performs well on balanced datasets, it struggles to distinguish features between tail classes in the latent space when dealing with long-tailed data. To address this issue, we propose Rebalanced Supervised Contrastive Learning (ReCL), which can effectively enhance the separability of tail classes features. Compared with two state-of-the-art methods, Contrastive Learning based hybrid networks (Hybrid-SC) and Targeted Supervised Contrastive Learning (TSC), ReCL has two distinctive characteristics: (1) ReCL enhances the clarity of classification boundaries between tail classes by encouraging samples to align more closely with their corresponding prototypes. (2) ReCL does not require targets generation, thereby conserving computational resources. Our method significantly improves the recognition of tail classes, demonstrating competitive accuracy across multiple long-tailed datasets. Our code has been uploaded to <span><span>https://github.com/cxh981110/ReCL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"252 ","pages":"Article 104291"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000141","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the real world, data often follows a long-tailed distribution, resulting in head classes receiving more attention while tail classes are frequently overlooked. Although supervised contrastive learning (SCL) performs well on balanced datasets, it struggles to distinguish features between tail classes in the latent space when dealing with long-tailed data. To address this issue, we propose Rebalanced Supervised Contrastive Learning (ReCL), which can effectively enhance the separability of tail classes features. Compared with two state-of-the-art methods, Contrastive Learning based hybrid networks (Hybrid-SC) and Targeted Supervised Contrastive Learning (TSC), ReCL has two distinctive characteristics: (1) ReCL enhances the clarity of classification boundaries between tail classes by encouraging samples to align more closely with their corresponding prototypes. (2) ReCL does not require targets generation, thereby conserving computational resources. Our method significantly improves the recognition of tail classes, demonstrating competitive accuracy across multiple long-tailed datasets. Our code has been uploaded to https://github.com/cxh981110/ReCL.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems