Uncovering the applications, developments, and future research directions of the open-source energy modelling system (OSeMOSYS): A systematic literature review
Fernando Plazas-Niño , Naomi Tan , Mark Howells , Vivien Foster , Jairo Quirós-Tortós
{"title":"Uncovering the applications, developments, and future research directions of the open-source energy modelling system (OSeMOSYS): A systematic literature review","authors":"Fernando Plazas-Niño , Naomi Tan , Mark Howells , Vivien Foster , Jairo Quirós-Tortós","doi":"10.1016/j.esd.2024.101629","DOIUrl":null,"url":null,"abstract":"<div><div>Energy system modelling for sustainable development has advanced significantly as a critical tool for designing cost-effective energy transitions. Modellers and analysts have used these tools to support international organizations and policymakers in crafting and making decisions about energy policy. Open-source frameworks have been instrumental in this progress, enhancing stakeholder engagement, transparency, and public acceptance. Among these, the Open-Source Energy Modelling System (OSeMOSYS) stands out as a key example, widely applied in energy transition and planning studies. As the body of OSeMOSYS literature rapidly expands, it is essential to track research advancements to guide both current and future modellers. This paper presents a systematic literature review, exploring the applications, developments, and research trends related to OSeMOSYS over the last 10 years. The findings highlight a significant growth in OSeMOSYS-based research, with an annual increase of approximately 28 %, and most applications occurring in Africa and Latin America, though largely conducted by European institutions. Six key application areas were identified, such as capacity expansion planning in the power sector, transport sector planning, and sector coupling opportunities. Nine categories of complementary methods commonly integrated with OSeMOSYS were also categorized, including power sector performance, stakeholder engagement, and geospatial assessments. A thorough review of code enhancements demonstrates the framework's adaptability to various fields, such as flexibility assessment, hydropower systems, and storage modelling. Furthermore, seven key future research directions were identified: operational feasibility, uncertainty evaluation, temporal and spatial resolutions, technological detail, storage modelling, and macroeconomic impacts. This paper aims to serve as a comprehensive resource for modellers, analysts, and users, offering insights into research questions, complementary methods, available code enhancements, and potential future directions for the use of OSeMOSYS.</div></div>","PeriodicalId":49209,"journal":{"name":"Energy for Sustainable Development","volume":"85 ","pages":"Article 101629"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy for Sustainable Development","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973082624002552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy system modelling for sustainable development has advanced significantly as a critical tool for designing cost-effective energy transitions. Modellers and analysts have used these tools to support international organizations and policymakers in crafting and making decisions about energy policy. Open-source frameworks have been instrumental in this progress, enhancing stakeholder engagement, transparency, and public acceptance. Among these, the Open-Source Energy Modelling System (OSeMOSYS) stands out as a key example, widely applied in energy transition and planning studies. As the body of OSeMOSYS literature rapidly expands, it is essential to track research advancements to guide both current and future modellers. This paper presents a systematic literature review, exploring the applications, developments, and research trends related to OSeMOSYS over the last 10 years. The findings highlight a significant growth in OSeMOSYS-based research, with an annual increase of approximately 28 %, and most applications occurring in Africa and Latin America, though largely conducted by European institutions. Six key application areas were identified, such as capacity expansion planning in the power sector, transport sector planning, and sector coupling opportunities. Nine categories of complementary methods commonly integrated with OSeMOSYS were also categorized, including power sector performance, stakeholder engagement, and geospatial assessments. A thorough review of code enhancements demonstrates the framework's adaptability to various fields, such as flexibility assessment, hydropower systems, and storage modelling. Furthermore, seven key future research directions were identified: operational feasibility, uncertainty evaluation, temporal and spatial resolutions, technological detail, storage modelling, and macroeconomic impacts. This paper aims to serve as a comprehensive resource for modellers, analysts, and users, offering insights into research questions, complementary methods, available code enhancements, and potential future directions for the use of OSeMOSYS.
期刊介绍:
Published on behalf of the International Energy Initiative, Energy for Sustainable Development is the journal for decision makers, managers, consultants, policy makers, planners and researchers in both government and non-government organizations. It publishes original research and reviews about energy in developing countries, sustainable development, energy resources, technologies, policies and interactions.