{"title":"Harnessing solar PV potential for decarbonization in Nepal: A GIS based assessment of ground-mounted, rooftop, and agrivoltaic solar systems for Nepal","authors":"Geeta Bhatta , Sunil Prasad Lohani , Manisha KC , Ramchandra Bhandari , Debajit Palit , Timothy Anderson","doi":"10.1016/j.esd.2024.101618","DOIUrl":null,"url":null,"abstract":"<div><div>The electricity demand in Nepal, like in other developing countries, is increasing due to population and economic growth. To meet the increased demand, it is important to use cleaner fuels supporting global decarbonization efforts and clean energy transition. One way is through the increased use of renewable energy sources such as wind and solar energy. Despite being a Himalayan country, Nepal is blessed with significant solar resources. However, the scale of this resource has not been adequately and properly assessed. This article attempts to assess the solar PV potential using Geographic Information System (GIS) technology. A spatial analysis was performed to identify suitable areas by considering insolation, land use classifications and physical topography. The study found that Nepal has significant solar PV potential, with the ability to generate up to 552 TWh/year from ground-mounted, rooftop, and agrivoltaics, against a current demand of 12.3 TWh. The levelized cost of electricity was estimated to be in the range of $56 and $72 per MWh, indicating a huge potential to complement hydroelectricity, the main electricity source in Nepal. Of the three typologies examined, agrivoltaics appears to have a significant potential for producing clean electricity in rural areas without affecting the agricultural production. We recommend that to achieve net-zero emission targets, Nepal's policy framework should prioritize deployment of solar PV: ground-mounted PV for utility scale, rooftop PV for urban areas and agrivoltaic for rural areas. Robust Power Purchase Agreement rates and enabling policies could boost investment and accelerate the solar PV adoption. Finally, the methodology and the results presented can serve as a useful reference for undertaking similar studies in other countries.</div></div>","PeriodicalId":49209,"journal":{"name":"Energy for Sustainable Development","volume":"85 ","pages":"Article 101618"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy for Sustainable Development","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973082624002448","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The electricity demand in Nepal, like in other developing countries, is increasing due to population and economic growth. To meet the increased demand, it is important to use cleaner fuels supporting global decarbonization efforts and clean energy transition. One way is through the increased use of renewable energy sources such as wind and solar energy. Despite being a Himalayan country, Nepal is blessed with significant solar resources. However, the scale of this resource has not been adequately and properly assessed. This article attempts to assess the solar PV potential using Geographic Information System (GIS) technology. A spatial analysis was performed to identify suitable areas by considering insolation, land use classifications and physical topography. The study found that Nepal has significant solar PV potential, with the ability to generate up to 552 TWh/year from ground-mounted, rooftop, and agrivoltaics, against a current demand of 12.3 TWh. The levelized cost of electricity was estimated to be in the range of $56 and $72 per MWh, indicating a huge potential to complement hydroelectricity, the main electricity source in Nepal. Of the three typologies examined, agrivoltaics appears to have a significant potential for producing clean electricity in rural areas without affecting the agricultural production. We recommend that to achieve net-zero emission targets, Nepal's policy framework should prioritize deployment of solar PV: ground-mounted PV for utility scale, rooftop PV for urban areas and agrivoltaic for rural areas. Robust Power Purchase Agreement rates and enabling policies could boost investment and accelerate the solar PV adoption. Finally, the methodology and the results presented can serve as a useful reference for undertaking similar studies in other countries.
期刊介绍:
Published on behalf of the International Energy Initiative, Energy for Sustainable Development is the journal for decision makers, managers, consultants, policy makers, planners and researchers in both government and non-government organizations. It publishes original research and reviews about energy in developing countries, sustainable development, energy resources, technologies, policies and interactions.