Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2025-02-01 DOI:10.1016/j.ajps.2024.100988
Yingqi Chen , Zuocheng Qiu , Xueling Hu , Tiehua Wang , Guoqing Li , Ziling Tang , Chongzhou Fang , Weibei Sheng , Jin Zhao , Fei Yu , Jian Weng , Anjaneyulu Udduttula , Geetha Manivasagam , Hui Zeng
{"title":"Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects","authors":"Yingqi Chen ,&nbsp;Zuocheng Qiu ,&nbsp;Xueling Hu ,&nbsp;Tiehua Wang ,&nbsp;Guoqing Li ,&nbsp;Ziling Tang ,&nbsp;Chongzhou Fang ,&nbsp;Weibei Sheng ,&nbsp;Jin Zhao ,&nbsp;Fei Yu ,&nbsp;Jian Weng ,&nbsp;Anjaneyulu Udduttula ,&nbsp;Geetha Manivasagam ,&nbsp;Hui Zeng","doi":"10.1016/j.ajps.2024.100988","DOIUrl":null,"url":null,"abstract":"<div><div>In clinical settings, regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods, restricted bone growth medications, and a scarcity of commercial bone grafts. To treat this life-threatening issue, improved biofunctional grafts capable of properly healing critical-sized bone defects are required. In this study, we effectively created anti-fracture hydrogel systems using spongy-like metal-organic (magnesium-phosphate) coordinated chitosan-modified injectable hydrogels (CPMg) loaded with a bioinspired neobavaisoflavone (NBF) component. The CPMg-NBF hydrogels showed outstanding anti-fracture capabilities during compression testing and retained exceptional mechanical stability even after 28 d of immersion in phosphate-buffered saline. They also demonstrated prolonged and stable release profiles of Mg<sup>2+</sup> and NBF. Importantly, CPMg-NBF hydrogels revealed robust biphasic mineralization and were non-toxic to MC3T3-E1 cells. To better understand the underlying mechanism of Mg<sup>2+</sup> and NBF component, as well as their synergistic effect on osteogenesis, we investigated the expression of key osteogenic proteins in the p38 MAPK and NOTCH pathways. Our results showed that CPMg-NBF hydrogels greatly increased the expression of osteogenic proteins (Runx2, OCN, OPN, BMPS and ALP). <em>In vivo</em> experiments showed that the implantation of CPMg-NBF hydrogels resulted in a significant increase in new bone growth within critical-sized calvarial defects. Based on these findings, we expect that the CPMg-NBF supramolecular hydrogel has tremendous promise for use as a therapeutic biomaterial for treating critical-sized calvarial defects.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 1","pages":"Article 100988"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624001053","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical settings, regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods, restricted bone growth medications, and a scarcity of commercial bone grafts. To treat this life-threatening issue, improved biofunctional grafts capable of properly healing critical-sized bone defects are required. In this study, we effectively created anti-fracture hydrogel systems using spongy-like metal-organic (magnesium-phosphate) coordinated chitosan-modified injectable hydrogels (CPMg) loaded with a bioinspired neobavaisoflavone (NBF) component. The CPMg-NBF hydrogels showed outstanding anti-fracture capabilities during compression testing and retained exceptional mechanical stability even after 28 d of immersion in phosphate-buffered saline. They also demonstrated prolonged and stable release profiles of Mg2+ and NBF. Importantly, CPMg-NBF hydrogels revealed robust biphasic mineralization and were non-toxic to MC3T3-E1 cells. To better understand the underlying mechanism of Mg2+ and NBF component, as well as their synergistic effect on osteogenesis, we investigated the expression of key osteogenic proteins in the p38 MAPK and NOTCH pathways. Our results showed that CPMg-NBF hydrogels greatly increased the expression of osteogenic proteins (Runx2, OCN, OPN, BMPS and ALP). In vivo experiments showed that the implantation of CPMg-NBF hydrogels resulted in a significant increase in new bone growth within critical-sized calvarial defects. Based on these findings, we expect that the CPMg-NBF supramolecular hydrogel has tremendous promise for use as a therapeutic biomaterial for treating critical-sized calvarial defects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
3-phosphonopropionic acid
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
Efficient anticancer drug delivery using nano-colloids self-assembled with an unconventional amphiphile bearing pumpkin-shaped host molecule Electrically conductive “SMART” hydrogels for on-demand drug delivery Polymeric nanocarriers for therapeutic gene delivery Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid Tailoring carrier-free nanoparticles based on natural small molecule assembly for synergistic anti-tumor efficacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1