Life cycle assessment of electric and gasoline moto-taxis in Yucatán, México: Impact of battery technology and social considerations

IF 4.4 2区 工程技术 Q2 ENERGY & FUELS Energy for Sustainable Development Pub Date : 2024-12-04 DOI:10.1016/j.esd.2024.101614
Luis O. Polanco Vásquez , Juan Carlos Chavarría-Hernández , Alfredo Arias Trinidad , Luis Carlos Ordóñez-López , Silvana Forti Sosa , Patricia Yolanda Contreras Pool , J. Noemí Barrera-Cabrera
{"title":"Life cycle assessment of electric and gasoline moto-taxis in Yucatán, México: Impact of battery technology and social considerations","authors":"Luis O. Polanco Vásquez ,&nbsp;Juan Carlos Chavarría-Hernández ,&nbsp;Alfredo Arias Trinidad ,&nbsp;Luis Carlos Ordóñez-López ,&nbsp;Silvana Forti Sosa ,&nbsp;Patricia Yolanda Contreras Pool ,&nbsp;J. Noemí Barrera-Cabrera","doi":"10.1016/j.esd.2024.101614","DOIUrl":null,"url":null,"abstract":"<div><div>To address the climate crisis driven by elevated GHG emissions, electrification of terrestrial transportation is a key strategy. This includes motorcycle taxis (moto-taxis), widely used in rural and peri-urban areas for short-distance passenger transport in Mexico. This study integrates environmental and social dimensions to evaluate moto-taxis in the Yucatán Peninsula, a region characterized by its unique energy matrix and socio-economic context. A cradle-to-grave Life Cycle Assessment (LCA), performed using SimaPro software and aligned with ISO 14040/14044 standards, compared gasoline-powered moto-taxis (M-gasoline) with electric moto-taxis using lead-acid (M‑lead) and lithium-ion (M‑lithium) batteries. The use-phase results reveal that M‑lithium has the lowest environmental impacts, followed by M‑lead and M-gasoline. Endpoint analysis further indicates that M-gasoline exhibits the highest single-score impacts in all damage categories, including human health, ecosystems, and resource scarcity. Specifically, the ecosystem damage caused by M-gasoline is more than three times that of its electric counterparts. Midpoint analysis highlights that M‑lead shows the highest impacts in freshwater and marine ecotoxicity, while M‑lithium exhibits elevated impacts in marine eutrophication, terrestrial ecotoxicity, and resource scarcity due to fossil fuel-based electricity. Social challenges such as driver safety, lack of social security, gender inequality, and limited financial support further influence the adoption of electric moto-taxis. Addressing these requires regulatory improvements, targeted subsidies, and inclusive urban planning. These findings underscore the need to enhance battery technology, transition to renewable energy, and implement socio-political solutions to advance sustainable urban mobility in developing regions. By contextualizing the study within Yucatán, this research offers insights applicable to similar regions transitioning to electric mobility.</div></div>","PeriodicalId":49209,"journal":{"name":"Energy for Sustainable Development","volume":"85 ","pages":"Article 101614"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy for Sustainable Development","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973082624002400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the climate crisis driven by elevated GHG emissions, electrification of terrestrial transportation is a key strategy. This includes motorcycle taxis (moto-taxis), widely used in rural and peri-urban areas for short-distance passenger transport in Mexico. This study integrates environmental and social dimensions to evaluate moto-taxis in the Yucatán Peninsula, a region characterized by its unique energy matrix and socio-economic context. A cradle-to-grave Life Cycle Assessment (LCA), performed using SimaPro software and aligned with ISO 14040/14044 standards, compared gasoline-powered moto-taxis (M-gasoline) with electric moto-taxis using lead-acid (M‑lead) and lithium-ion (M‑lithium) batteries. The use-phase results reveal that M‑lithium has the lowest environmental impacts, followed by M‑lead and M-gasoline. Endpoint analysis further indicates that M-gasoline exhibits the highest single-score impacts in all damage categories, including human health, ecosystems, and resource scarcity. Specifically, the ecosystem damage caused by M-gasoline is more than three times that of its electric counterparts. Midpoint analysis highlights that M‑lead shows the highest impacts in freshwater and marine ecotoxicity, while M‑lithium exhibits elevated impacts in marine eutrophication, terrestrial ecotoxicity, and resource scarcity due to fossil fuel-based electricity. Social challenges such as driver safety, lack of social security, gender inequality, and limited financial support further influence the adoption of electric moto-taxis. Addressing these requires regulatory improvements, targeted subsidies, and inclusive urban planning. These findings underscore the need to enhance battery technology, transition to renewable energy, and implement socio-political solutions to advance sustainable urban mobility in developing regions. By contextualizing the study within Yucatán, this research offers insights applicable to similar regions transitioning to electric mobility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy for Sustainable Development
Energy for Sustainable Development ENERGY & FUELS-ENERGY & FUELS
CiteScore
8.10
自引率
9.10%
发文量
187
审稿时长
6-12 weeks
期刊介绍: Published on behalf of the International Energy Initiative, Energy for Sustainable Development is the journal for decision makers, managers, consultants, policy makers, planners and researchers in both government and non-government organizations. It publishes original research and reviews about energy in developing countries, sustainable development, energy resources, technologies, policies and interactions.
期刊最新文献
Energy optimization of a residential building for electricity, cooling, and heating: A path to Net Zero Energy A systematic survey of household heating with biomass pellet stoves in rural Northern China Energy efficiency improvement of a wood-manufacturing plant in Morocco through energy audit Environmental and social impacts of self-financed solar PV adoption in rural Zambia: Insights from mopane worms, mushrooms, fishing, bushmeat and ethnomedicine Navigating the AI-powered transformation of renewable energy supply chains: A strategic roadmap to digitainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1