3D3A class of parallel mechanisms: Design and performance evaluation

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-12-13 DOI:10.1016/j.robot.2024.104891
Savaş Yılmaz , Serdar Küçük , Metin Toz
{"title":"3D3A class of parallel mechanisms: Design and performance evaluation","authors":"Savaş Yılmaz ,&nbsp;Serdar Küçük ,&nbsp;Metin Toz","doi":"10.1016/j.robot.2024.104891","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a study of 20 six-degrees-of-freedom (DoF) Generalized Stewart–Gough Platform (GSP) type mechanisms in 3D3A class. These mechanisms are characterized by three distance and three angular constraints between their base platforms (BPs) and moving platforms (MPs). The mechanisms are categorized into two groups based on the geometric shapes of their BPs and MPs. The platform shapes are determined by the types of joints and their connection configurations on the platforms. The platforms are designed with regular polygonal shapes. Two groups are generated according to whether the geometric shapes of the platforms are the same or different. There are 10 types of mechanisms in the first group, where the BP and the MP shapes of each are the same. The second group also includes 10 types of mechanisms, each with two design variations, resulting in 20 designs. Thus, a total of 30 mechanisms are designed. The reachable workspaces and dexterities of these manipulators are computed to assess the impact of design parameters such as the ratio between the BP and MP radii and the rotation of one end of the BP edges. The reachable workspace volume and the Global Conditioning Index (GCI) are selected as the performance metrics. The results of all mechanisms are presented in the paper, with a comparison of the two best mechanisms against the classical 3×3 Stewart Platform. The study shows that the <span><math><mrow><msubsup><mi>D</mi><mn>4</mn><mn>3</mn></msubsup><mspace></mspace><msubsup><mi>A</mi><mn>1</mn><mn>3</mn></msubsup></mrow></math></span> type mechanism achieves a large reachable workspace while maintaining a high GCI value.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"185 ","pages":"Article 104891"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002756","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study of 20 six-degrees-of-freedom (DoF) Generalized Stewart–Gough Platform (GSP) type mechanisms in 3D3A class. These mechanisms are characterized by three distance and three angular constraints between their base platforms (BPs) and moving platforms (MPs). The mechanisms are categorized into two groups based on the geometric shapes of their BPs and MPs. The platform shapes are determined by the types of joints and their connection configurations on the platforms. The platforms are designed with regular polygonal shapes. Two groups are generated according to whether the geometric shapes of the platforms are the same or different. There are 10 types of mechanisms in the first group, where the BP and the MP shapes of each are the same. The second group also includes 10 types of mechanisms, each with two design variations, resulting in 20 designs. Thus, a total of 30 mechanisms are designed. The reachable workspaces and dexterities of these manipulators are computed to assess the impact of design parameters such as the ratio between the BP and MP radii and the rotation of one end of the BP edges. The reachable workspace volume and the Global Conditioning Index (GCI) are selected as the performance metrics. The results of all mechanisms are presented in the paper, with a comparison of the two best mechanisms against the classical 3×3 Stewart Platform. The study shows that the D43A13 type mechanism achieves a large reachable workspace while maintaining a high GCI value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Editorial Board Virtual attention points: Bridging human movement characteristics and dexterous robot motion generation Development of a new path-planning algorithm for lattice based self-reconfigurable modular robots with pivoting cube shaped modules A port water navigation solution based on priority sampling SAC: Taking Yantai port environment as an example End2end vehicle multitask perception in adverse weather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1