Yixin Huang , Xiaojia Xiang , Chao Yan , Han Zhou , Dengqing Tang , Jun Lai
{"title":"Hierarchical probabilistic graphical models for multi-UAV cooperative pursuit in dynamic environments","authors":"Yixin Huang , Xiaojia Xiang , Chao Yan , Han Zhou , Dengqing Tang , Jun Lai","doi":"10.1016/j.robot.2024.104890","DOIUrl":null,"url":null,"abstract":"<div><div>Pursuing a non-cooperative moving target through multiple unmanned aerial vehicles (multi-UAV) is still challenging, especially in complex environments with dynamic obstacles. This article proposes a self-organizing multi-UAV cooperative pursuit approach based on hierarchical probabilistic graphical models. Firstly, we establish the UAV double-integrator kinematic models and provide a mathematical description of the pursuit task. Subsequently, a task-specific hierarchical probabilistic graphical model is designed for autonomous decision-making of UAVs. In the model, local perception states and individual motion capabilities are integrated to estimate the probability distribution parameters for each node. To enhance pursuit efficiency, the pursuit task is segmented into multiple phases and a “dispersed encirclement” strategy is devised inspired by wolf pack hunting behavior. Finally, numerical simulations and real-world experiments are conducted to validate the scalability, adaptability, and robustness of the proposed approach.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"185 ","pages":"Article 104890"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002744","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Pursuing a non-cooperative moving target through multiple unmanned aerial vehicles (multi-UAV) is still challenging, especially in complex environments with dynamic obstacles. This article proposes a self-organizing multi-UAV cooperative pursuit approach based on hierarchical probabilistic graphical models. Firstly, we establish the UAV double-integrator kinematic models and provide a mathematical description of the pursuit task. Subsequently, a task-specific hierarchical probabilistic graphical model is designed for autonomous decision-making of UAVs. In the model, local perception states and individual motion capabilities are integrated to estimate the probability distribution parameters for each node. To enhance pursuit efficiency, the pursuit task is segmented into multiple phases and a “dispersed encirclement” strategy is devised inspired by wolf pack hunting behavior. Finally, numerical simulations and real-world experiments are conducted to validate the scalability, adaptability, and robustness of the proposed approach.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.