{"title":"Continuous O ’Connell effect and period variations of solar-like totally eclipsing contact binary BO Ari","authors":"Meng Guo , Jingjing Wang , Jing Zhang , Xiaoman Tian","doi":"10.1016/j.newast.2024.102341","DOIUrl":null,"url":null,"abstract":"<div><div>We obtained newly BV<span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>c</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> light curves for the contact binary BO Ari in 2023. The multi-color light curves were analyzed using the Wilson–Devinney (2013) program, which solutions reveal that BO Ari is a middle contact binary with <em>q</em> = 0.1778, <em>f</em> = 48% and a small temperature difference of 92 K. All minimum times were collected to re-calculated <em>O-C</em>. The <em>O-C</em> curves show a cyclic oscillation (<span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> = 0.00337 d, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> = 16.35 yr) superimposed on a long-term decreasing (<em>dP/dt</em> = <span><math><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>63</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> d <span><math><msup><mrow><mi>yr</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>). This secular period decrease may be due to mass transfer from the more massive component to the less massive one. The cyclic trend was explained by the light-travel time effect due to the presence of a third body or magnetic activity. With this long-term mass transferring, the fill-out degree will increase. Furtherly, BO Ari will evolve into a deeply contact binary. In addition, during the monitoring of the space telescope Transiting Exoplanet Survey Satellite (TESS), it is the first time to discover continuous variation of the O’Connell effect in each cycle, obviously the positive O’Connell effect changes to a negative one over a short time. These phenomena imply the presence of possible magnetic activity on the surface of the component. Based on these fitting parameters, the hot spot and dark spot were found on the components.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"116 ","pages":"Article 102341"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624001556","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We obtained newly BV light curves for the contact binary BO Ari in 2023. The multi-color light curves were analyzed using the Wilson–Devinney (2013) program, which solutions reveal that BO Ari is a middle contact binary with q = 0.1778, f = 48% and a small temperature difference of 92 K. All minimum times were collected to re-calculated O-C. The O-C curves show a cyclic oscillation ( = 0.00337 d, = 16.35 yr) superimposed on a long-term decreasing (dP/dt = d ). This secular period decrease may be due to mass transfer from the more massive component to the less massive one. The cyclic trend was explained by the light-travel time effect due to the presence of a third body or magnetic activity. With this long-term mass transferring, the fill-out degree will increase. Furtherly, BO Ari will evolve into a deeply contact binary. In addition, during the monitoring of the space telescope Transiting Exoplanet Survey Satellite (TESS), it is the first time to discover continuous variation of the O’Connell effect in each cycle, obviously the positive O’Connell effect changes to a negative one over a short time. These phenomena imply the presence of possible magnetic activity on the surface of the component. Based on these fitting parameters, the hot spot and dark spot were found on the components.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.