{"title":"Tea Disease Recognition Based on Image Segmentation and Data Augmentation","authors":"Ji Li;Chenyi Liao","doi":"10.1109/ACCESS.2025.3534024","DOIUrl":null,"url":null,"abstract":"Accurate identification of tea leaf diseases is crucial for intelligent tea cultivation and monitoring. However, the complex environment of tea plantations—affected by weather variations and uneven lighting—poses significant challenges for building effective disease recognition models using raw field-captured images. To address this, we propose a method that combines two-stage image segmentation with an improved conditional generative adversarial network (IC-GAN). The two-stage segmentation approach, integrating graph cuts and support vector machines (SVM), effectively isolates disease regions from complex backgrounds. The IC-GAN augments the dataset by generating high-quality synthetic disease images for model training. Finally, an Inception Embedded Pooling Convolutional Neural Network (IDCNN) is developed for disease recognition. Experimental results demonstrate that the segmentation method improves recognition accuracy from 53.36% to 75.63%, while the IC-GAN increases the dataset size. The IDCNN achieves 97.66% accuracy, 97.36% recall, and a 96.98% F1 score across three types of tea diseases. Comparative evaluations on two additional datasets further confirm the method’s robustness and accuracy, offering a practical solution to reduce tea production losses and improve quality.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"19664-19677"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10852315/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of tea leaf diseases is crucial for intelligent tea cultivation and monitoring. However, the complex environment of tea plantations—affected by weather variations and uneven lighting—poses significant challenges for building effective disease recognition models using raw field-captured images. To address this, we propose a method that combines two-stage image segmentation with an improved conditional generative adversarial network (IC-GAN). The two-stage segmentation approach, integrating graph cuts and support vector machines (SVM), effectively isolates disease regions from complex backgrounds. The IC-GAN augments the dataset by generating high-quality synthetic disease images for model training. Finally, an Inception Embedded Pooling Convolutional Neural Network (IDCNN) is developed for disease recognition. Experimental results demonstrate that the segmentation method improves recognition accuracy from 53.36% to 75.63%, while the IC-GAN increases the dataset size. The IDCNN achieves 97.66% accuracy, 97.36% recall, and a 96.98% F1 score across three types of tea diseases. Comparative evaluations on two additional datasets further confirm the method’s robustness and accuracy, offering a practical solution to reduce tea production losses and improve quality.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.