Antonio V. A. Lundgren;Byron L. D. Bezerra;Carmelo J. A. Bastos-Filho
{"title":"VisualSAF-A Novel Framework for Visual Semantic Analysis Tasks","authors":"Antonio V. A. Lundgren;Byron L. D. Bezerra;Carmelo J. A. Bastos-Filho","doi":"10.1109/ACCESS.2025.3535314","DOIUrl":null,"url":null,"abstract":"We introduce VisualSAF, a novel Visual Semantic Analysis Framework designed to enhance the understanding of contextual characteristics in Visual Scene Analysis (VSA) tasks. The framework leverages semantic variables extracted using machine learning algorithms to provide additional high-level information, augmenting the capabilities of the primary task model. Comprising three main components – the General DL Model, Semantic Variables, and Output Branches – VisualSAF offers a modular and adaptable approach to addressing diverse VSA tasks. The General DL Model processes input images, extracting high-level features through a backbone network and detecting regions of interest. Semantic Variables are then extracted from these regions, incorporating a wide range of contextual information tailored to specific scenarios. Finally, the Output Branch integrates semantic variables and detections, generating high-level task information while allowing for flexible weighting of inputs to optimize task performance. The framework is demonstrated through experiments on the HOD Dataset, showcasing improvements in mean average precision and mean average recall compared to baseline models; the improvements are 0.05 in both mAP and 0.01 in mAR compared to the baseline. Future research directions include exploring multiple semantic variables, developing more complex output heads, and investigating the framework’s performance across context-shifting datasets.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"21052-21063"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855394/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce VisualSAF, a novel Visual Semantic Analysis Framework designed to enhance the understanding of contextual characteristics in Visual Scene Analysis (VSA) tasks. The framework leverages semantic variables extracted using machine learning algorithms to provide additional high-level information, augmenting the capabilities of the primary task model. Comprising three main components – the General DL Model, Semantic Variables, and Output Branches – VisualSAF offers a modular and adaptable approach to addressing diverse VSA tasks. The General DL Model processes input images, extracting high-level features through a backbone network and detecting regions of interest. Semantic Variables are then extracted from these regions, incorporating a wide range of contextual information tailored to specific scenarios. Finally, the Output Branch integrates semantic variables and detections, generating high-level task information while allowing for flexible weighting of inputs to optimize task performance. The framework is demonstrated through experiments on the HOD Dataset, showcasing improvements in mean average precision and mean average recall compared to baseline models; the improvements are 0.05 in both mAP and 0.01 in mAR compared to the baseline. Future research directions include exploring multiple semantic variables, developing more complex output heads, and investigating the framework’s performance across context-shifting datasets.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.