{"title":"IAR 2.0: An Algorithm for Refining Inconsistent Annotations for Time-Series Data Using Discriminative Classifiers","authors":"Einari Vaaras;Manu Airaksinen;Okko Räsänen","doi":"10.1109/ACCESS.2025.3534637","DOIUrl":null,"url":null,"abstract":"The performance of discriminative machine-learning classifiers, such as neural networks, is limited by training label inconsistencies. Even expert-based annotations can suffer from label inconsistencies, especially in the case of ambiguous phenomena-to-annotate. To address this, we propose a novel algorithm, iterative annotation refinement (IAR) 2.0, for refining inconsistent annotations for time-series data. IAR 2.0 uses a procedure that utilizes discriminative classifiers to iteratively combine original annotations with increasingly accurate posterior estimates of classes present in the data. Unlike most existing label refinement approaches, IAR 2.0 offers a simpler yet effective solution for resolving ambiguities in training labels, working with real label noise on time-series data instead of synthetic label noise on image data. We demonstrate the effectiveness of our algorithm through five distinct classification tasks on two highly distinct data modalities. As a result, we show that the labels produced by IAR 2.0 systematically improve classifier performance compared to using the original labels or a previous state-of-the-art method for label refinement. We also conduct a set of controlled simulations to systematically investigate when IAR 2.0 fails to improve on the original training labels. The simulation results demonstrate that IAR 2.0 improves performance in nearly all tested conditions. We also find that the decrease in performance when IAR 2.0 fails is small compared to the average performance gain when IAR 2.0 succeeds, encouraging the use of IAR 2.0 even when the nature of data is unknown. The code is freely available at <uri>https://github.com/SPEECHCOG/IAR_2</uri>.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"19979-19995"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854471/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of discriminative machine-learning classifiers, such as neural networks, is limited by training label inconsistencies. Even expert-based annotations can suffer from label inconsistencies, especially in the case of ambiguous phenomena-to-annotate. To address this, we propose a novel algorithm, iterative annotation refinement (IAR) 2.0, for refining inconsistent annotations for time-series data. IAR 2.0 uses a procedure that utilizes discriminative classifiers to iteratively combine original annotations with increasingly accurate posterior estimates of classes present in the data. Unlike most existing label refinement approaches, IAR 2.0 offers a simpler yet effective solution for resolving ambiguities in training labels, working with real label noise on time-series data instead of synthetic label noise on image data. We demonstrate the effectiveness of our algorithm through five distinct classification tasks on two highly distinct data modalities. As a result, we show that the labels produced by IAR 2.0 systematically improve classifier performance compared to using the original labels or a previous state-of-the-art method for label refinement. We also conduct a set of controlled simulations to systematically investigate when IAR 2.0 fails to improve on the original training labels. The simulation results demonstrate that IAR 2.0 improves performance in nearly all tested conditions. We also find that the decrease in performance when IAR 2.0 fails is small compared to the average performance gain when IAR 2.0 succeeds, encouraging the use of IAR 2.0 even when the nature of data is unknown. The code is freely available at https://github.com/SPEECHCOG/IAR_2.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.