Improving Sleep Disorder Diagnosis Through Optimized Machine Learning Approaches

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-01-28 DOI:10.1109/ACCESS.2025.3535535
Md. Atiqur Rahman;Israt Jahan;Maheen Islam;Taskeed Jabid;Md Sawkat Ali;Mohammad Rifat Ahmmad Rashid;Mohammad Manzurul Islam;Md. Hasanul Ferdaus;Md Mostofa Kamal Rasel;Mahmuda Rawnak Jahan;Shayla Sharmin;Tanzina Afroz Rimi;Atia Sanjida Talukder;Md. Mafiul Hasan Matin;M. Ameer Ali
{"title":"Improving Sleep Disorder Diagnosis Through Optimized Machine Learning Approaches","authors":"Md. Atiqur Rahman;Israt Jahan;Maheen Islam;Taskeed Jabid;Md Sawkat Ali;Mohammad Rifat Ahmmad Rashid;Mohammad Manzurul Islam;Md. Hasanul Ferdaus;Md Mostofa Kamal Rasel;Mahmuda Rawnak Jahan;Shayla Sharmin;Tanzina Afroz Rimi;Atia Sanjida Talukder;Md. Mafiul Hasan Matin;M. Ameer Ali","doi":"10.1109/ACCESS.2025.3535535","DOIUrl":null,"url":null,"abstract":"Classifying sleep disorders, such as obstructive sleep apnea and insomnia, is crucial for improving human quality of life due to their significant impact on health. The traditional expert-based classification of sleep stages, particularly through visual inspection, is challenging and prone to errors. This fact highlights the need for accurate machine learning algorithms (MLAs) for analyzing, monitoring, and diagnosing sleep disorders. This paper compares the MLAs for sleep disorder classification, specifically targeting None, Sleep Apnea, and Insomnia, using the Sleep Health and Lifestyle Dataset. We conducted two experiments. In the first one, we selected five key features from the feature spaces using the Gradient Boosting Regressor based on the Mean Decrease Impurity (MDI) technique. We chose two key features using the same methodology in the second experiment. We utilized 15 machine learning classifiers, and Gradient Boosting, Voting, Catboost, and Stacking Classifiers achieved an identical classification accuracy of 97.33%, with Precision, Recall, F1-score of 0.9733, and Specificity of 0.9569 in the original feature space. Among these, Gradient Boosting had the highest AUC of 0.9953 and was 3.36, 5.86, and 20.16 times faster than Voting, Catboost, and Stacking Classifiers, respectively. In the second experiment, the Decision Tree achieved the highest accuracy of 96% in the original and engineered feature spaces and was 149.33 times faster in the engineered feature space. Thus, this research proposes Gradient Boosting as the most effective method, outperforming all state-of-the-art techniques by achieving the highest accuracy, precision, recall, F1-score, and AUC, highlighting its superior classification performance and computational efficiency.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"20989-21004"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856004/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying sleep disorders, such as obstructive sleep apnea and insomnia, is crucial for improving human quality of life due to their significant impact on health. The traditional expert-based classification of sleep stages, particularly through visual inspection, is challenging and prone to errors. This fact highlights the need for accurate machine learning algorithms (MLAs) for analyzing, monitoring, and diagnosing sleep disorders. This paper compares the MLAs for sleep disorder classification, specifically targeting None, Sleep Apnea, and Insomnia, using the Sleep Health and Lifestyle Dataset. We conducted two experiments. In the first one, we selected five key features from the feature spaces using the Gradient Boosting Regressor based on the Mean Decrease Impurity (MDI) technique. We chose two key features using the same methodology in the second experiment. We utilized 15 machine learning classifiers, and Gradient Boosting, Voting, Catboost, and Stacking Classifiers achieved an identical classification accuracy of 97.33%, with Precision, Recall, F1-score of 0.9733, and Specificity of 0.9569 in the original feature space. Among these, Gradient Boosting had the highest AUC of 0.9953 and was 3.36, 5.86, and 20.16 times faster than Voting, Catboost, and Stacking Classifiers, respectively. In the second experiment, the Decision Tree achieved the highest accuracy of 96% in the original and engineered feature spaces and was 149.33 times faster in the engineered feature space. Thus, this research proposes Gradient Boosting as the most effective method, outperforming all state-of-the-art techniques by achieving the highest accuracy, precision, recall, F1-score, and AUC, highlighting its superior classification performance and computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Corrections to “Prioritizing DevOps Implementation Guidelines for Sustainable Software Projects” Corrections to “Information Security and Artificial Intelligence-Assisted Diagnosis in an Internet of Medical Thing System (IoMTS)” Corrections to “A Semi-Supervised Learning Approach to Quality-Based Web Service Classification” Corrections to “The Attention Mechanism Performance Analysis for Football Players Using the Internet of Things and Deep Learning” Corrections to “Sandpiper Optimization Algorithm With Region Growing Based Robust Retinal Blood Vessel Segmentation Approach”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1