Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars

Zhigang Wang;Jin He;Ting Shu;Ning Zhang;Xiang Lu;Junfeng Wang;Trieu-Kien Truong
{"title":"Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars","authors":"Zhigang Wang;Jin He;Ting Shu;Ning Zhang;Xiang Lu;Junfeng Wang;Trieu-Kien Truong","doi":"10.1109/TRS.2025.3530404","DOIUrl":null,"url":null,"abstract":"In the realm of modern radar electronic warfare, hostile jamming signals with time-variant polarization states pose a significant challenge to the performance of host radars. This article presents a signal-processing scheme specifically designed to suppress polarization-agile jamming signals in dual-polarized digital array radars (DARs). By innovatively modeling the polarization-agile jamming signal as two orthogonal linearly polarized signals sharing the same elevation-azimuth angle, a direction-cosine estimation and association algorithm tailored for such signals is derived. Furthermore, a spatial covariance matrix reconstruction (CMR) method that uniquely extracts the time-varying polarization parameters of each jamming signal is developed. Building upon this, a spatial-polarization CMR method is devised to effectively suppress all polarization-agile jamming signals. The key innovation lies in achieving adaptive polarization matching during the cancellation process, which sets this scheme apart from conventional radar signal-processing approaches. Simulation results underscore the superiority of the proposed scheme, demonstrating significant performance enhancements over commonly used methodologies.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"247-259"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843722/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of modern radar electronic warfare, hostile jamming signals with time-variant polarization states pose a significant challenge to the performance of host radars. This article presents a signal-processing scheme specifically designed to suppress polarization-agile jamming signals in dual-polarized digital array radars (DARs). By innovatively modeling the polarization-agile jamming signal as two orthogonal linearly polarized signals sharing the same elevation-azimuth angle, a direction-cosine estimation and association algorithm tailored for such signals is derived. Furthermore, a spatial covariance matrix reconstruction (CMR) method that uniquely extracts the time-varying polarization parameters of each jamming signal is developed. Building upon this, a spatial-polarization CMR method is devised to effectively suppress all polarization-agile jamming signals. The key innovation lies in achieving adaptive polarization matching during the cancellation process, which sets this scheme apart from conventional radar signal-processing approaches. Simulation results underscore the superiority of the proposed scheme, demonstrating significant performance enhancements over commonly used methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications Machine Learning-Aided Nonhomogeneity Detection Method for Airborne Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1