A Machine Learning-Based Platform for Monitoring and Prediction of Hazardous Gases in Rural and Remote Areas

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-01-27 DOI:10.1109/ACCESS.2025.3535158
Edgar F. Ladeira;Bruno M. C. Silva
{"title":"A Machine Learning-Based Platform for Monitoring and Prediction of Hazardous Gases in Rural and Remote Areas","authors":"Edgar F. Ladeira;Bruno M. C. Silva","doi":"10.1109/ACCESS.2025.3535158","DOIUrl":null,"url":null,"abstract":"The emissions of pollutants and radioactive gases are the main causes of several environmental disasters that may cause premature deaths. The significant impact of these gases on public health is a major concern, especially in remote and rural regions. In these areas, access to security and health services is scarce, and real-time monitoring of citizens and the conditions in which they live is very difficult. Without means to monitor or predict, healthcare and government stakeholders typically act too late when indoor incidents occur. Hence, this paper presents a digital decision support system that uses Machine Learning (ML) for monitoring and prediction of incidents related with indoor hazardous gases. This system is implemented on top of an Internet of Things (IoT) ecosystem named RuraLTHINGS. This project, developed by the University of Beira Interior, Portugal, monitors the quality of air in remote and rural regions in real-time. The platform aims to predict and notify residents and other stakeholders about environmental conditions and prevent the risk of exposure to dangerous gases. The system uses ML techniques to analyze the collected data and provide future predictions using unidirectional Long Short-Term Memory (LSTM) layers overlaid on bidirectional LSTM layers, meaning layers stacked together, which was the model architecture that delivered the best results in this context. This paper presents the validation of the digital platform and the ML model using a real test bed environment. The model successfully predicted future data trends related to indoor monitoring of hazardous gases.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"20297-20315"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855430/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The emissions of pollutants and radioactive gases are the main causes of several environmental disasters that may cause premature deaths. The significant impact of these gases on public health is a major concern, especially in remote and rural regions. In these areas, access to security and health services is scarce, and real-time monitoring of citizens and the conditions in which they live is very difficult. Without means to monitor or predict, healthcare and government stakeholders typically act too late when indoor incidents occur. Hence, this paper presents a digital decision support system that uses Machine Learning (ML) for monitoring and prediction of incidents related with indoor hazardous gases. This system is implemented on top of an Internet of Things (IoT) ecosystem named RuraLTHINGS. This project, developed by the University of Beira Interior, Portugal, monitors the quality of air in remote and rural regions in real-time. The platform aims to predict and notify residents and other stakeholders about environmental conditions and prevent the risk of exposure to dangerous gases. The system uses ML techniques to analyze the collected data and provide future predictions using unidirectional Long Short-Term Memory (LSTM) layers overlaid on bidirectional LSTM layers, meaning layers stacked together, which was the model architecture that delivered the best results in this context. This paper presents the validation of the digital platform and the ML model using a real test bed environment. The model successfully predicted future data trends related to indoor monitoring of hazardous gases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Corrections to “Prioritizing DevOps Implementation Guidelines for Sustainable Software Projects” Corrections to “Information Security and Artificial Intelligence-Assisted Diagnosis in an Internet of Medical Thing System (IoMTS)” Corrections to “A Semi-Supervised Learning Approach to Quality-Based Web Service Classification” Corrections to “The Attention Mechanism Performance Analysis for Football Players Using the Internet of Things and Deep Learning” Corrections to “Sandpiper Optimization Algorithm With Region Growing Based Robust Retinal Blood Vessel Segmentation Approach”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1