{"title":"A Joint Forgetting Factor-Based Adaptive Extended Kalman Filtering Approach to Predict the State-of-Charge and Model Parameter of Lithium-Ion Battery","authors":"Satyaprakash Rout;Satyajit Das","doi":"10.1109/ACCESS.2025.3533137","DOIUrl":null,"url":null,"abstract":"The accuracy of model-based State of Charge (SOC) estimators often degrades due to parametric uncertainty, measurement errors, and variations in operating temperature. Many Kalman filter-driven SOC estimators in the literature overlook these uncertainties, leading to imprecise SOC estimation. To address these challenges, this study proposes a joint forgetting factor-based adaptive extended Kalman filter (JFFAEKF). The JFFAEKF approach evaluates uncertainties in the battery model and incorporates them into the SOC estimation process under dynamic operating conditions. By augmenting both the SOC and battery model parameters into a single state vector, the estimator concurrently updates these variables. An adaptive correction mechanism for process and measurement noise covariance matrices is introduced, leveraging the innovation and residual errors of estimated terminal voltage. These covariance updates enable the computation of an appropriate filter gain to mitigate the adverse effects of model and measurement uncertainties. Additionally, a forgetting factor is integrated into the design to enhance computational efficiency and convergence rate. The practical applicability of the proposed JFFAEKF is validated using real-world current profiles from the LA92, UDDS, and US06 drive cycles at various operating temperatures. The accuracy of the SOC estimation is demonstrated by comparing the root mean square error (<inline-formula> <tex-math>$E_{RMS}$ </tex-math></inline-formula>) and maximum absolute error (<inline-formula> <tex-math>$Max_{AE}$ </tex-math></inline-formula>) with other Kalman filter-based estimators. Furthermore, the estimator’s robustness is tested under adverse conditions, including offset current, sensor bias voltage, and parametric uncertainties in the battery model and state estimator. Results from diverse dynamic operating conditions confirm the superior performance of the JFFAEKF in SOC estimation compared to existing methods.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"16770-16786"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851262","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10851262/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of model-based State of Charge (SOC) estimators often degrades due to parametric uncertainty, measurement errors, and variations in operating temperature. Many Kalman filter-driven SOC estimators in the literature overlook these uncertainties, leading to imprecise SOC estimation. To address these challenges, this study proposes a joint forgetting factor-based adaptive extended Kalman filter (JFFAEKF). The JFFAEKF approach evaluates uncertainties in the battery model and incorporates them into the SOC estimation process under dynamic operating conditions. By augmenting both the SOC and battery model parameters into a single state vector, the estimator concurrently updates these variables. An adaptive correction mechanism for process and measurement noise covariance matrices is introduced, leveraging the innovation and residual errors of estimated terminal voltage. These covariance updates enable the computation of an appropriate filter gain to mitigate the adverse effects of model and measurement uncertainties. Additionally, a forgetting factor is integrated into the design to enhance computational efficiency and convergence rate. The practical applicability of the proposed JFFAEKF is validated using real-world current profiles from the LA92, UDDS, and US06 drive cycles at various operating temperatures. The accuracy of the SOC estimation is demonstrated by comparing the root mean square error ($E_{RMS}$ ) and maximum absolute error ($Max_{AE}$ ) with other Kalman filter-based estimators. Furthermore, the estimator’s robustness is tested under adverse conditions, including offset current, sensor bias voltage, and parametric uncertainties in the battery model and state estimator. Results from diverse dynamic operating conditions confirm the superior performance of the JFFAEKF in SOC estimation compared to existing methods.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.