{"title":"Quantum Computing for Advanced Driver Assistance Systems and Autonomous Vehicles: A Review","authors":"Avantika Rattan;Abhishek Rudra Pal;Muralimohan Gurusamy","doi":"10.1109/ACCESS.2025.3532958","DOIUrl":null,"url":null,"abstract":"Advanced Driver Assistance System (ADAS) has become an essential feature in vehicles, and it is leading to the evolution of autonomous vehicles. But the technologies to implement ADAS suffer from certain inherent limitations, such as latency rate, computational speed, accuracy of the algorithm, security, and privacy, which are also the important factors for realizing full autonomous vehicles. With respect to these hindrances, an in-depth analysis of the existing research has shown that quantum machine learning (QML) can hold a powerful and alternate solution for the development of autonomous vehicles. The perks of quantum computation (QC) over classical systems are apparent with respect to security, privacy, and an exponentially high computation rate. The current review study underlines the benefits of quantum computation and asks for more QML research to improve real-time decision-making in autonomous vehicles, ultimately improving their safety and efficiency. The promise of quantum computing to handle the massive data and computational complexity that classical methods struggle with necessitates new studies in quantum machine learning (QML) for autonomous vehicles.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"17554-17582"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10850907","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10850907/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced Driver Assistance System (ADAS) has become an essential feature in vehicles, and it is leading to the evolution of autonomous vehicles. But the technologies to implement ADAS suffer from certain inherent limitations, such as latency rate, computational speed, accuracy of the algorithm, security, and privacy, which are also the important factors for realizing full autonomous vehicles. With respect to these hindrances, an in-depth analysis of the existing research has shown that quantum machine learning (QML) can hold a powerful and alternate solution for the development of autonomous vehicles. The perks of quantum computation (QC) over classical systems are apparent with respect to security, privacy, and an exponentially high computation rate. The current review study underlines the benefits of quantum computation and asks for more QML research to improve real-time decision-making in autonomous vehicles, ultimately improving their safety and efficiency. The promise of quantum computing to handle the massive data and computational complexity that classical methods struggle with necessitates new studies in quantum machine learning (QML) for autonomous vehicles.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.