Feature Selection in Socio-Economic Analysis: A Multi-Method Approach for Accurate Predictive Outcomes

Q2 Decision Sciences International Journal of Crowd Science Pub Date : 2025-01-29 DOI:10.26599/IJCS.2023.9100035
Ahmad Al-Qerem;Ali Mohd Ali;Issam Jebreen;Ahmad Nabot;Mohammed Rajab;Mohammad Alauthman;Amjad Aldweesh;Faisal Aburub;Someah Alangari;Musab Alzgol
{"title":"Feature Selection in Socio-Economic Analysis: A Multi-Method Approach for Accurate Predictive Outcomes","authors":"Ahmad Al-Qerem;Ali Mohd Ali;Issam Jebreen;Ahmad Nabot;Mohammed Rajab;Mohammad Alauthman;Amjad Aldweesh;Faisal Aburub;Someah Alangari;Musab Alzgol","doi":"10.26599/IJCS.2023.9100035","DOIUrl":null,"url":null,"abstract":"Feature selection is a cornerstone in advancing the accuracy and efficiency of predictive models, particularly in nuanced domains like socio-economic analysis. This study explores nine distinct feature selection methods, utilizing a heart disease dataset as a representative model for complex socio-economic systems. Our findings identified four universally recognized features as critical across all selection methods. However, the divergence in significance attributed to other features by different methods underscores the inherent variability in selection techniques. When the top four features were incorporated into twelve classification models, a noticeable surge in predictive accuracy was observed, emphasizing their foundational role in enhancing model outcomes. The variations among methods stress the need for a methodical and discerning approach to feature selection, especially in data-rich socio-economic landscapes. As we venture further into an era defined by data-driven decision-making, rigour and precision in feature selection become indispensable. Future research should extend this approach to broader datasets, ensuring the robustness and adaptability of our findings.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"9 1","pages":"64-78"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858028/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection is a cornerstone in advancing the accuracy and efficiency of predictive models, particularly in nuanced domains like socio-economic analysis. This study explores nine distinct feature selection methods, utilizing a heart disease dataset as a representative model for complex socio-economic systems. Our findings identified four universally recognized features as critical across all selection methods. However, the divergence in significance attributed to other features by different methods underscores the inherent variability in selection techniques. When the top four features were incorporated into twelve classification models, a noticeable surge in predictive accuracy was observed, emphasizing their foundational role in enhancing model outcomes. The variations among methods stress the need for a methodical and discerning approach to feature selection, especially in data-rich socio-economic landscapes. As we venture further into an era defined by data-driven decision-making, rigour and precision in feature selection become indispensable. Future research should extend this approach to broader datasets, ensuring the robustness and adaptability of our findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Crowd Science
International Journal of Crowd Science Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.70
自引率
0.00%
发文量
20
审稿时长
24 weeks
期刊最新文献
Contents Front Cover Improving Energy Harvesting System from Ambient RF Sources in Social Systems with Overcrowding Editorial of Cyber-Physical Social Systems and Smart Environments CGLS Method for Efficient Equalization of OFDM Systems Under Doubly Dispersive Fading Channels with an Application Into 6G Communications in Smart Overcrowded
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1