Ahmad Al-Qerem;Ali Mohd Ali;Issam Jebreen;Ahmad Nabot;Mohammed Rajab;Mohammad Alauthman;Amjad Aldweesh;Faisal Aburub;Someah Alangari;Musab Alzgol
{"title":"Feature Selection in Socio-Economic Analysis: A Multi-Method Approach for Accurate Predictive Outcomes","authors":"Ahmad Al-Qerem;Ali Mohd Ali;Issam Jebreen;Ahmad Nabot;Mohammed Rajab;Mohammad Alauthman;Amjad Aldweesh;Faisal Aburub;Someah Alangari;Musab Alzgol","doi":"10.26599/IJCS.2023.9100035","DOIUrl":null,"url":null,"abstract":"Feature selection is a cornerstone in advancing the accuracy and efficiency of predictive models, particularly in nuanced domains like socio-economic analysis. This study explores nine distinct feature selection methods, utilizing a heart disease dataset as a representative model for complex socio-economic systems. Our findings identified four universally recognized features as critical across all selection methods. However, the divergence in significance attributed to other features by different methods underscores the inherent variability in selection techniques. When the top four features were incorporated into twelve classification models, a noticeable surge in predictive accuracy was observed, emphasizing their foundational role in enhancing model outcomes. The variations among methods stress the need for a methodical and discerning approach to feature selection, especially in data-rich socio-economic landscapes. As we venture further into an era defined by data-driven decision-making, rigour and precision in feature selection become indispensable. Future research should extend this approach to broader datasets, ensuring the robustness and adaptability of our findings.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"9 1","pages":"64-78"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858028/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Feature selection is a cornerstone in advancing the accuracy and efficiency of predictive models, particularly in nuanced domains like socio-economic analysis. This study explores nine distinct feature selection methods, utilizing a heart disease dataset as a representative model for complex socio-economic systems. Our findings identified four universally recognized features as critical across all selection methods. However, the divergence in significance attributed to other features by different methods underscores the inherent variability in selection techniques. When the top four features were incorporated into twelve classification models, a noticeable surge in predictive accuracy was observed, emphasizing their foundational role in enhancing model outcomes. The variations among methods stress the need for a methodical and discerning approach to feature selection, especially in data-rich socio-economic landscapes. As we venture further into an era defined by data-driven decision-making, rigour and precision in feature selection become indispensable. Future research should extend this approach to broader datasets, ensuring the robustness and adaptability of our findings.