Nitesh Kumar;Jaekyung Jackie Lee;Sivakumar Rathinam;Swaroop Darbha;P. B. Sujit;Rajiv Raman
{"title":"The Persistent Robot Charging Problem for Long-Duration Autonomy","authors":"Nitesh Kumar;Jaekyung Jackie Lee;Sivakumar Rathinam;Swaroop Darbha;P. B. Sujit;Rajiv Raman","doi":"10.1109/LRA.2024.3524897","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel formulation for finding the recharging schedule for a fleet of <inline-formula><tex-math>$n$</tex-math></inline-formula> heterogeneous robots that minimizes utilization of recharging resources. This study provides a foundational framework applicable to Multi-Robot Mission Planning, particularly in scenarios demanding Long-Duration Autonomy (LDA) or other contexts that necessitate periodic recharging of multiple robots. A novel Integer Linear Programming (ILP) model is proposed to calculate the optimal initial conditions (partial charge) for individual robots, leading to minimal utilization of charging stations. This formulation was further generalized to maximize the servicing time for robots when charging stations are limited. The efficacy of the proposed formulation is evaluated through a comparative analysis, measuring its performance against the thrift price scheduling algorithm documented in the existing literature. The findings not only corroborate the effectiveness of the proposed approach but also underscore its potential as a valuable tool in optimizing resource allocation for a range of robotic and engineering applications.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2191-2198"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819616/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel formulation for finding the recharging schedule for a fleet of $n$ heterogeneous robots that minimizes utilization of recharging resources. This study provides a foundational framework applicable to Multi-Robot Mission Planning, particularly in scenarios demanding Long-Duration Autonomy (LDA) or other contexts that necessitate periodic recharging of multiple robots. A novel Integer Linear Programming (ILP) model is proposed to calculate the optimal initial conditions (partial charge) for individual robots, leading to minimal utilization of charging stations. This formulation was further generalized to maximize the servicing time for robots when charging stations are limited. The efficacy of the proposed formulation is evaluated through a comparative analysis, measuring its performance against the thrift price scheduling algorithm documented in the existing literature. The findings not only corroborate the effectiveness of the proposed approach but also underscore its potential as a valuable tool in optimizing resource allocation for a range of robotic and engineering applications.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.