Nowhere to H2IDE: Fraud Detection From Multi-Relation Graphs via Disentangled Homophily and Heterophily Identification

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-12-26 DOI:10.1109/TKDE.2024.3523107
Chao Fu;Guannan Liu;Kun Yuan;Junjie Wu
{"title":"Nowhere to H2IDE: Fraud Detection From Multi-Relation Graphs via Disentangled Homophily and Heterophily Identification","authors":"Chao Fu;Guannan Liu;Kun Yuan;Junjie Wu","doi":"10.1109/TKDE.2024.3523107","DOIUrl":null,"url":null,"abstract":"Fraud detection has always been one of the primary concerns in social and economic activities and is becoming a decisive force in the booming digital economy. Graph structures formed by rich user interactions naturally serve as important clues for identifying fraudsters. While numerous graph neural network-based methods have been proposed, the diverse interactive connections within graphs and the heterophilic connections deliberately established by fraudsters to normal users as camouflage pose new research challenges. In this light, we propose H<sup>2</sup>IDE (Homophily and Heterophily Identification with Disentangled Embeddings) for accurate fraud detection in multi-relation graphs. H<sup>2</sup>IDE features in an independence-constrained disentangled representation learning scheme to capture various latent behavioral patterns in graphs, along with a supervised identification task to specifically model the factor-wise heterophilic connections, both of which are proven crucial to fraud detection. We also design a relation-aware attention mechanism for hierarchical and adaptive neighborhood aggregation in H<sup>2</sup>IDE. Extensive comparative experiments with state-of-the-art baseline methods on two real-world multi-relation graphs and two large-scale homogeneous graphs demonstrate the superiority and scalability of our proposed method and highlight the key role of disentangled representation learning with homophily and heterophily identification.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 3","pages":"1380-1393"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816539/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fraud detection has always been one of the primary concerns in social and economic activities and is becoming a decisive force in the booming digital economy. Graph structures formed by rich user interactions naturally serve as important clues for identifying fraudsters. While numerous graph neural network-based methods have been proposed, the diverse interactive connections within graphs and the heterophilic connections deliberately established by fraudsters to normal users as camouflage pose new research challenges. In this light, we propose H2IDE (Homophily and Heterophily Identification with Disentangled Embeddings) for accurate fraud detection in multi-relation graphs. H2IDE features in an independence-constrained disentangled representation learning scheme to capture various latent behavioral patterns in graphs, along with a supervised identification task to specifically model the factor-wise heterophilic connections, both of which are proven crucial to fraud detection. We also design a relation-aware attention mechanism for hierarchical and adaptive neighborhood aggregation in H2IDE. Extensive comparative experiments with state-of-the-art baseline methods on two real-world multi-relation graphs and two large-scale homogeneous graphs demonstrate the superiority and scalability of our proposed method and highlight the key role of disentangled representation learning with homophily and heterophily identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1