{"title":"Nowhere to H2IDE: Fraud Detection From Multi-Relation Graphs via Disentangled Homophily and Heterophily Identification","authors":"Chao Fu;Guannan Liu;Kun Yuan;Junjie Wu","doi":"10.1109/TKDE.2024.3523107","DOIUrl":null,"url":null,"abstract":"Fraud detection has always been one of the primary concerns in social and economic activities and is becoming a decisive force in the booming digital economy. Graph structures formed by rich user interactions naturally serve as important clues for identifying fraudsters. While numerous graph neural network-based methods have been proposed, the diverse interactive connections within graphs and the heterophilic connections deliberately established by fraudsters to normal users as camouflage pose new research challenges. In this light, we propose H<sup>2</sup>IDE (Homophily and Heterophily Identification with Disentangled Embeddings) for accurate fraud detection in multi-relation graphs. H<sup>2</sup>IDE features in an independence-constrained disentangled representation learning scheme to capture various latent behavioral patterns in graphs, along with a supervised identification task to specifically model the factor-wise heterophilic connections, both of which are proven crucial to fraud detection. We also design a relation-aware attention mechanism for hierarchical and adaptive neighborhood aggregation in H<sup>2</sup>IDE. Extensive comparative experiments with state-of-the-art baseline methods on two real-world multi-relation graphs and two large-scale homogeneous graphs demonstrate the superiority and scalability of our proposed method and highlight the key role of disentangled representation learning with homophily and heterophily identification.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 3","pages":"1380-1393"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816539/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fraud detection has always been one of the primary concerns in social and economic activities and is becoming a decisive force in the booming digital economy. Graph structures formed by rich user interactions naturally serve as important clues for identifying fraudsters. While numerous graph neural network-based methods have been proposed, the diverse interactive connections within graphs and the heterophilic connections deliberately established by fraudsters to normal users as camouflage pose new research challenges. In this light, we propose H2IDE (Homophily and Heterophily Identification with Disentangled Embeddings) for accurate fraud detection in multi-relation graphs. H2IDE features in an independence-constrained disentangled representation learning scheme to capture various latent behavioral patterns in graphs, along with a supervised identification task to specifically model the factor-wise heterophilic connections, both of which are proven crucial to fraud detection. We also design a relation-aware attention mechanism for hierarchical and adaptive neighborhood aggregation in H2IDE. Extensive comparative experiments with state-of-the-art baseline methods on two real-world multi-relation graphs and two large-scale homogeneous graphs demonstrate the superiority and scalability of our proposed method and highlight the key role of disentangled representation learning with homophily and heterophily identification.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.