Risk-Aware Stochastic Vehicle Trajectory Prediction With Spatial-Temporal Interaction Modeling

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2025-01-16 DOI:10.1109/OJITS.2025.3530268
Yuxiang Feng;Qiming Ye;Eduardo Candela;Jose Javier Escribano-Macias;Bo Hu;Yiannis Demiris;Panagiotis Angeloudis
{"title":"Risk-Aware Stochastic Vehicle Trajectory Prediction With Spatial-Temporal Interaction Modeling","authors":"Yuxiang Feng;Qiming Ye;Eduardo Candela;Jose Javier Escribano-Macias;Bo Hu;Yiannis Demiris;Panagiotis Angeloudis","doi":"10.1109/OJITS.2025.3530268","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles need to continuously analyse the driving context and establish a comprehensive understanding of the dynamic traffic environment. To ensure the safety and efficiency of their operations, it would be beneficial to have accurate predictions of surrounding vehicles’ future trajectories. AVs can adjust their motions proactively to improve road safety and comfort with such information. This paper proposes a novel approach to predict the future trajectories of interacting vehicles, through a model of potential spatial-temporal interactions. A unique kernel function that emphasises risk-awareness was developed to extract spatial dependencies. The established model was trained and evaluated with the publicly available Highway Drone Dataset and Intersection Drone Dataset. The performance of the developed model was assessed with eight state-of-the-art methods. An ablation study and safety analysis were also conducted to evaluate the proposed risk-awareness kernel function. Results show that the proposed model’s inference speed is over eight times faster than the commonly used LSTM-based models. It also achieves an improvement of over 8% in prediction accuracy when compared with the state-of-the-art model.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"37-48"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843350/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles need to continuously analyse the driving context and establish a comprehensive understanding of the dynamic traffic environment. To ensure the safety and efficiency of their operations, it would be beneficial to have accurate predictions of surrounding vehicles’ future trajectories. AVs can adjust their motions proactively to improve road safety and comfort with such information. This paper proposes a novel approach to predict the future trajectories of interacting vehicles, through a model of potential spatial-temporal interactions. A unique kernel function that emphasises risk-awareness was developed to extract spatial dependencies. The established model was trained and evaluated with the publicly available Highway Drone Dataset and Intersection Drone Dataset. The performance of the developed model was assessed with eight state-of-the-art methods. An ablation study and safety analysis were also conducted to evaluate the proposed risk-awareness kernel function. Results show that the proposed model’s inference speed is over eight times faster than the commonly used LSTM-based models. It also achieves an improvement of over 8% in prediction accuracy when compared with the state-of-the-art model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors IEEE OPEN JOURNAL OF THE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1