Rate-Distortion-Perception Tradeoff for Gaussian Vector Sources

Jingjing Qian;Sadaf Salehkalaibar;Jun Chen;Ashish Khisti;Wei Yu;Wuxian Shi;Yiqun Ge;Wen Tong
{"title":"Rate-Distortion-Perception Tradeoff for Gaussian Vector Sources","authors":"Jingjing Qian;Sadaf Salehkalaibar;Jun Chen;Ashish Khisti;Wei Yu;Wuxian Shi;Yiqun Ge;Wen Tong","doi":"10.1109/JSAIT.2024.3509420","DOIUrl":null,"url":null,"abstract":"This paper studies the rate-distortion-perception (RDP) tradeoff for a Gaussian vector source coding problem where the goal is to compress the multi-component source subject to distortion and perception constraints. Specifically, the RDP setting with either the Kullback-Leibler (KL) divergence or Wasserstein-2 metric as the perception loss function is examined, and it is shown that for Gaussian vector sources, jointly Gaussian reconstructions are optimal. We further demonstrate that the optimal tradeoff can be expressed as an optimization problem, which can be explicitly solved. An interesting property of the optimal solution is as follows. Without the perception constraint, the traditional reverse water-filling solution for characterizing the rate-distortion (RD) tradeoff of a Gaussian vector source states that the optimal rate allocated to each component depends on a constant, called the water level. If the variance of a specific component is below the water level, it is assigned a zero compression rate. However, with active distortion and perception constraints, we show that the optimal rates allocated to the different components are always positive. Moreover, the water levels that determine the optimal rate allocation for different components are unequal. We further treat the special case of perceptually perfect reconstruction and study its RDP function in the high-distortion and low-distortion regimes to obtain insight to the structure of the optimal solution.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10771799/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the rate-distortion-perception (RDP) tradeoff for a Gaussian vector source coding problem where the goal is to compress the multi-component source subject to distortion and perception constraints. Specifically, the RDP setting with either the Kullback-Leibler (KL) divergence or Wasserstein-2 metric as the perception loss function is examined, and it is shown that for Gaussian vector sources, jointly Gaussian reconstructions are optimal. We further demonstrate that the optimal tradeoff can be expressed as an optimization problem, which can be explicitly solved. An interesting property of the optimal solution is as follows. Without the perception constraint, the traditional reverse water-filling solution for characterizing the rate-distortion (RD) tradeoff of a Gaussian vector source states that the optimal rate allocated to each component depends on a constant, called the water level. If the variance of a specific component is below the water level, it is assigned a zero compression rate. However, with active distortion and perception constraints, we show that the optimal rates allocated to the different components are always positive. Moreover, the water levels that determine the optimal rate allocation for different components are unequal. We further treat the special case of perceptually perfect reconstruction and study its RDP function in the high-distortion and low-distortion regimes to obtain insight to the structure of the optimal solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Selected Areas in Information Theory Vol. 5 JSAIT Issue on Information-Theoretic Methods for Trustworthy and Reliable Machine Learning Table of Contents Board of Governors Editorial Data, Physics, and Life Through the Lens of Information Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1