Effect of intracellular algal organic matter and nitrate on disinfection byproduct formation in chlorinated water after UV/H2O2 and UV/Cl2 advanced oxidation processes†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-12-19 DOI:10.1039/D4EW00749B
Fateme Barancheshme and Olya S. Keen
{"title":"Effect of intracellular algal organic matter and nitrate on disinfection byproduct formation in chlorinated water after UV/H2O2 and UV/Cl2 advanced oxidation processes†","authors":"Fateme Barancheshme and Olya S. Keen","doi":"10.1039/D4EW00749B","DOIUrl":null,"url":null,"abstract":"<p >Advanced oxidation processes (AOPs) are one of the highly effective alternatives for treatment of algal toxins in drinking water. Water that contains algal toxins commonly has organic matter of algal origin and elevated nitrate. Organic matter undergoes transformations during advanced oxidation processes and may change in a way that increases disinfection byproduct (DBP) formation when water is chlorinated post-AOP. Nitrate forms reactive nitrogen species under certain UV wavelengths that can also interact with organic matter and change its properties in a way that increases post-AOP DBP formation. Two types of advanced oxidation processes (UV/H<small><sub>2</sub></small>O<small><sub>2</sub></small> and UV/Cl<small><sub>2</sub></small>) were compared in their ability to change the formation potential of regulated DBPs [four trihalomethanes (THMs) and nine haloacetic acids (HAAs)] and an unregulated nitrogenous DBP (N-DBP) <em>N</em>-nitrosodimethylamine (NDMA) due to the interaction of the process with algal organic matter (AOM) and nitrate in the water. The two AOPs showed no significant differences in post-treatment DBP formation under any of the tested conditions. Higher levels of treatment with both processes led to slightly higher formation potential of some THMs. AOM made a poor precursor for additional THMs and three HAAs (six not consistently detected), but had a higher NDMA yield than background organic matter (0.59 ng mg<small><sup>−1</sup></small>-C <em>vs.</em> 0.18 ng mg<small><sup>−1</sup></small>-C, <em>p</em> = 0.038). Nitrate suppressed chlorinated THMs and favored increased concentrations of brominated THMs and HAAs, resulting in higher percent incorporation of background bromide into DBPs. Moreover, nitrate addition (20 mg-N L<small><sup>−1</sup></small> of added nitrate compared to the background level of 0.47 mg-N L<small><sup>−1</sup></small>) led to 11 times higher NDMA formation. Formation of N-DBPs during post-AOP chlorination in the presence of AOM and nitrate warrants additional investigation.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 494-507"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00749b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00749b","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced oxidation processes (AOPs) are one of the highly effective alternatives for treatment of algal toxins in drinking water. Water that contains algal toxins commonly has organic matter of algal origin and elevated nitrate. Organic matter undergoes transformations during advanced oxidation processes and may change in a way that increases disinfection byproduct (DBP) formation when water is chlorinated post-AOP. Nitrate forms reactive nitrogen species under certain UV wavelengths that can also interact with organic matter and change its properties in a way that increases post-AOP DBP formation. Two types of advanced oxidation processes (UV/H2O2 and UV/Cl2) were compared in their ability to change the formation potential of regulated DBPs [four trihalomethanes (THMs) and nine haloacetic acids (HAAs)] and an unregulated nitrogenous DBP (N-DBP) N-nitrosodimethylamine (NDMA) due to the interaction of the process with algal organic matter (AOM) and nitrate in the water. The two AOPs showed no significant differences in post-treatment DBP formation under any of the tested conditions. Higher levels of treatment with both processes led to slightly higher formation potential of some THMs. AOM made a poor precursor for additional THMs and three HAAs (six not consistently detected), but had a higher NDMA yield than background organic matter (0.59 ng mg−1-C vs. 0.18 ng mg−1-C, p = 0.038). Nitrate suppressed chlorinated THMs and favored increased concentrations of brominated THMs and HAAs, resulting in higher percent incorporation of background bromide into DBPs. Moreover, nitrate addition (20 mg-N L−1 of added nitrate compared to the background level of 0.47 mg-N L−1) led to 11 times higher NDMA formation. Formation of N-DBPs during post-AOP chlorination in the presence of AOM and nitrate warrants additional investigation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover Effect of inoculum percentage and hydrogen supply on hydrogenotrophic denitrification driven by anaerobic granular sludge† Correction: Kinetics and mechanism of hydrolysis of PF6− accelerated by H+ or Al3+ in aqueous solution Bioremediation of uranium contaminated sites through the formation of U(vi) phosphate (bio)minerals† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1