Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2025-02-02 DOI:10.1007/s10876-024-02762-2
M. J. Gidado, Ahmad Anas Nagoor Gunny, Nor Amirah Azwa Norizal, Subash C. B. Gopinath, Chalermchai Wongs-Aree, Muaz Mohd Zaini Makhtar, Raja Hasnida Binti Raja Hashim, Mohd Hishamuddin Che Mat
{"title":"Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality","authors":"M. J. Gidado,&nbsp;Ahmad Anas Nagoor Gunny,&nbsp;Nor Amirah Azwa Norizal,&nbsp;Subash C. B. Gopinath,&nbsp;Chalermchai Wongs-Aree,&nbsp;Muaz Mohd Zaini Makhtar,&nbsp;Raja Hasnida Binti Raja Hashim,&nbsp;Mohd Hishamuddin Che Mat","doi":"10.1007/s10876-024-02762-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mango is a significant global fruit crop, producing over 1,000 million tonnes annually. However, postharvest losses due to pathogenic fungal infections are considerable, exacerbated by the continuous use of synthetic fungicides, which pose risks of fungal resistance and environmental harm. This study assessed the effectiveness of <i>Origanum vulgare</i>-based nanoemulsion against mango postharvest diseases and quality preservation. Results indicate that the <i>O. vulgare</i> nanoemulsion (Ore-S1-15) exhibited optimal properties, including small droplet size, low polydispersity, and stable pH. FTIR analysis identified key functional groups, while GC-MS results revealed prominent components with isopropyl myristate being the major constituent at 42.41%, followed by isopropyl palmitate (25.53%), oleic acid (4.57%), diethyl phthalate (3.84%), estagole (2.09%), 2-(phenylmethylene)-octanal (1.17%), cyclopentane acetic acid (0.85%), benzoic acid (0.34%), and coumarin (0.26%) as minor constituents. <i>In vitro</i> test of the Ore-S1-15 nanoemulsion against <i>Curvularia</i> sp. demonstrated significant antifungal activity, with 79.51 ± 0.95% conidia inhibition. Additionally, <i>in vivo</i> test showed a reduction in disease incidence on wounded mangoes. The Ore-S1-15 nanoemulsion enhanced quality parameters by delaying colour changes, reducing weight loss and steadily maintaining the total soluble solids. Thus, Ore-S1-15 nanoemulsion emerges as a promising and eco-friendly alternative to synthetic fungicides for controlling mango postharvest diseases and increasing shelf life while preserving quality.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02762-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Mango is a significant global fruit crop, producing over 1,000 million tonnes annually. However, postharvest losses due to pathogenic fungal infections are considerable, exacerbated by the continuous use of synthetic fungicides, which pose risks of fungal resistance and environmental harm. This study assessed the effectiveness of Origanum vulgare-based nanoemulsion against mango postharvest diseases and quality preservation. Results indicate that the O. vulgare nanoemulsion (Ore-S1-15) exhibited optimal properties, including small droplet size, low polydispersity, and stable pH. FTIR analysis identified key functional groups, while GC-MS results revealed prominent components with isopropyl myristate being the major constituent at 42.41%, followed by isopropyl palmitate (25.53%), oleic acid (4.57%), diethyl phthalate (3.84%), estagole (2.09%), 2-(phenylmethylene)-octanal (1.17%), cyclopentane acetic acid (0.85%), benzoic acid (0.34%), and coumarin (0.26%) as minor constituents. In vitro test of the Ore-S1-15 nanoemulsion against Curvularia sp. demonstrated significant antifungal activity, with 79.51 ± 0.95% conidia inhibition. Additionally, in vivo test showed a reduction in disease incidence on wounded mangoes. The Ore-S1-15 nanoemulsion enhanced quality parameters by delaying colour changes, reducing weight loss and steadily maintaining the total soluble solids. Thus, Ore-S1-15 nanoemulsion emerges as a promising and eco-friendly alternative to synthetic fungicides for controlling mango postharvest diseases and increasing shelf life while preserving quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synthesis and Application of Zr MOF UiO-66 Decorated with Folic Acid-Conjugated Poly Ethylene Glycol as a Strong Nanocarrier for the Targeted Drug Delivery of Epirubicin Biogenic Copper/Zinc Oxide Nanocomposites from Bixa orellana: Anticancer Effects through ROS Generation and Apoptosis Induction in Cervical Carcinoma Harnessing Oregano Nanoemulsion: A Novel Solution to Combat Curvalaria-Induced Fruit Rot and Preserve Mango Quality Photocatalytic Performance of Spinel Ferrites and their Carbon-Based Composites for Environmental Pollutant Degradation Tailoring the Catalytic Activity of Fe3O4 Nanoparticles for KNO3 Decomposition via Surface Functionalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1