Multiscale Simulation of Gas-Particle Flows in the Combustion Chambers of Solid-Propellant Rocket Motors

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2025-02-02 DOI:10.1134/S001546282460411X
N. Brykov, K. Volkov, V. Emelyanov, A. Efremov
{"title":"Multiscale Simulation of Gas-Particle Flows in the Combustion Chambers of Solid-Propellant Rocket Motors","authors":"N. Brykov,&nbsp;K. Volkov,&nbsp;V. Emelyanov,&nbsp;A. Efremov","doi":"10.1134/S001546282460411X","DOIUrl":null,"url":null,"abstract":"<p>The development and application of numerical simulation to the study of gas-dynamic processes occurring in solid-propellant rocket motors (SPRMs) is discussed. A characteristic feature of internal flows in the SPRM channels and nozzles is the presence of the condensed phase of nonspherical particles. Mathematical problems in this area feature the simultaneous occurrence of processes on many time and spatial scales, which describe the formation of agglomerate particles, their combustion, and transport in a flow of combustion products in internal channels and nozzles. A multilevel multiscale technique that combines models describing the state of the system at the micro-, meso-, and macroscales is the approach used to solve these problems. An overview of models varying in complexity and level of detail is given. The construction of multiscale models is considered in relation to the simulation of two-phase flows with metal-oxide agglomerates formed in the propellant channel and representing drops of molten metal with oxide particles attached to their surface. The options of the developed approach are demonstrated by the calculations of flows of combustion products containing agglomerate particles in the channels and nozzles of propulsion systems.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 5","pages":"1416 - 1436"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S001546282460411X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The development and application of numerical simulation to the study of gas-dynamic processes occurring in solid-propellant rocket motors (SPRMs) is discussed. A characteristic feature of internal flows in the SPRM channels and nozzles is the presence of the condensed phase of nonspherical particles. Mathematical problems in this area feature the simultaneous occurrence of processes on many time and spatial scales, which describe the formation of agglomerate particles, their combustion, and transport in a flow of combustion products in internal channels and nozzles. A multilevel multiscale technique that combines models describing the state of the system at the micro-, meso-, and macroscales is the approach used to solve these problems. An overview of models varying in complexity and level of detail is given. The construction of multiscale models is considered in relation to the simulation of two-phase flows with metal-oxide agglomerates formed in the propellant channel and representing drops of molten metal with oxide particles attached to their surface. The options of the developed approach are demonstrated by the calculations of flows of combustion products containing agglomerate particles in the channels and nozzles of propulsion systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Calculation of Transport Coefficients for Low-Temperature Plasma, and the Role of V. B. Baranov Heliopause Stability Molecular Dynamics Analysis of Thermalization of a Microcanonical Ensemble The Influence of Compressibility on the Interaction of a Clump with an Inhomogeneous Gaseous Layer Asymmetric Magnetorotational Supernovae for Various Stellar Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1