Novel Polyethyleneimine-chitosan Nanoparticles Encapsulating Urolithin B: A Potential Nanotherapeutic Approach for Diabetic Nephropathy

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2025-02-02 DOI:10.1007/s10876-024-02753-3
Jose Prakash Dharmian, S. P. Angelin Claret, Prakash Ramakrishnan, Pavazhaviji Pazhani, Nagamalai Vasimalai, Somasundaram Arumugam
{"title":"Novel Polyethyleneimine-chitosan Nanoparticles Encapsulating Urolithin B: A Potential Nanotherapeutic Approach for Diabetic Nephropathy","authors":"Jose Prakash Dharmian,&nbsp;S. P. Angelin Claret,&nbsp;Prakash Ramakrishnan,&nbsp;Pavazhaviji Pazhani,&nbsp;Nagamalai Vasimalai,&nbsp;Somasundaram Arumugam","doi":"10.1007/s10876-024-02753-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work was aimed at synthesizing and characterizing urolithin B-encapsulated polyethyleneimine (PEI)-conjugated chitosan nanoparticles and their probable therapeutic use for diabetes-induced kidney damage. Nanoparticles with a specific formulation were prepared using the optimized formulation method, and various analyses were conducted on their properties. A completion of the conjugation between PEI and chitosan was identified through nuclear magnetic resonance (NMR) spectroscopy. The percent Encapsulation Efficiency (EE) along with Loading Efficiency (LE) were also determined and optimized to have the maximum encapsulation of the drug. The improved formulation of UB-PEI-CHI-NPs, with a particle size of 150 nm and a zeta potential of + 20.2 mV, achieved a percentage entrapment efficiency of 85.4%. Nanoparticle concentration ranging from 10 to 100 µg/mL resulted in cell survival rates above 85%. The in vitro drug release study revealed that urolithin B is released gradually over a longer duration. The MTT assay further ascertained the biocompatibility of the formulation and the cytotoxicity of the formulation in a dose-dependent manner. These outcomes indicate that urolithin-loaded PEI-conjugated chitosan nanoparticles might be employed as an effective therapeutic approach for the treatment of diabetic nephropathy, and hence, further in vivo experiments are required to test the prospects of the formulated nanoparticles.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02753-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This work was aimed at synthesizing and characterizing urolithin B-encapsulated polyethyleneimine (PEI)-conjugated chitosan nanoparticles and their probable therapeutic use for diabetes-induced kidney damage. Nanoparticles with a specific formulation were prepared using the optimized formulation method, and various analyses were conducted on their properties. A completion of the conjugation between PEI and chitosan was identified through nuclear magnetic resonance (NMR) spectroscopy. The percent Encapsulation Efficiency (EE) along with Loading Efficiency (LE) were also determined and optimized to have the maximum encapsulation of the drug. The improved formulation of UB-PEI-CHI-NPs, with a particle size of 150 nm and a zeta potential of + 20.2 mV, achieved a percentage entrapment efficiency of 85.4%. Nanoparticle concentration ranging from 10 to 100 µg/mL resulted in cell survival rates above 85%. The in vitro drug release study revealed that urolithin B is released gradually over a longer duration. The MTT assay further ascertained the biocompatibility of the formulation and the cytotoxicity of the formulation in a dose-dependent manner. These outcomes indicate that urolithin-loaded PEI-conjugated chitosan nanoparticles might be employed as an effective therapeutic approach for the treatment of diabetic nephropathy, and hence, further in vivo experiments are required to test the prospects of the formulated nanoparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synthesis of Zinc Oxide Nanoparticles and Their Potential Application in the Detection of Latent Fingerprints Design and Development of Biotinylated SNEDDS for Improved Efficacy of Curcumin against Hepatocellular Carcinoma Seed-Mediated Continuous Growth of CoFe2O4 Nanoparticles in Triethylene Glycol Media: Role of Temperature and Injection Speed Halide Ion-Templated Atomic Precision Synthesis and Structural Modulation of Silver Sulfide Nanoclusters Optimizing Photocatalytic Efficiency for MB Dye Degradation Through Sol-Gel Synthesized ZrO2/Anatase-TiO2 Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1