Luis Gerardo Romero Hernández, Jaime Manuel Cabrera, Ramón Eduardo Chan López, Jorge Mauricio Paulin Fuentes
{"title":"Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics","authors":"Luis Gerardo Romero Hernández, Jaime Manuel Cabrera, Ramón Eduardo Chan López, Jorge Mauricio Paulin Fuentes","doi":"10.1007/s10773-025-05887-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05887-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.