Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY International Journal of Theoretical Physics Pub Date : 2025-02-03 DOI:10.1007/s10773-025-05887-w
Luis Gerardo Romero Hernández, Jaime Manuel Cabrera, Ramón Eduardo Chan López, Jorge Mauricio Paulin Fuentes
{"title":"Singular Lagrangians and the Hamilton-Jacobi Formalism in Classical Mechanics","authors":"Luis Gerardo Romero Hernández,&nbsp;Jaime Manuel Cabrera,&nbsp;Ramón Eduardo Chan López,&nbsp;Jorge Mauricio Paulin Fuentes","doi":"10.1007/s10773-025-05887-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05887-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work conducts a Hamilton-Jacobi analysis of classical dynamical systems with internal constraints. We examine four systems, all previously analyzed by David Brown: three with familiar components (point masses, springs, rods, ropes, and pulleys) and one chosen specifically for its detailed illustration of the Dirac-Bergmann algorithm’s logical steps. Including this fourth system allows for a direct and insightful comparison with the Hamilton-Jacobi formalism, thereby deepening our understanding of both methods. To provide a thorough analysis, we classify the systems based on their constraints: non-involutive, involutive, and a combination of both. We then use generalized brackets to ensure the theory’s integrability, systematically remove non-involutive constraints, and derive the equations of motion. This approach effectively showcases the Hamilton-Jacobi method’s ability to handle complex constraint structures. Additionally, our study includes an analysis of a gauge system, highlighting the versatility and broad applicability of the Hamilton-Jacobi formalism. By comparing our results with those from the Dirac-Bergmann and Faddeev-Jackiw algorithms, we demonstrate that the Hamilton-Jacobi approach is simpler and more efficient in its mathematical operations and offers advantages in computational implementation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
期刊最新文献
Entangled Simultaneity: Testing Lorentz and Light Speed Invariance with Quantum and Classical Entanglement Strong Gravitational Lensing and Shadows by Quantum Schwarzschild Black Hole in Homogeneous Plasma Model of a Static, Spherically Symmetric, Charged Star with Anisotropic Stress and Its Complexity Analysis Exploring Light Deflection and Black Hole Shadows in Rastall Theory with Plasma Effects On Local Unitary Equivalence of Multipartite Quantum States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1