{"title":"Power Balance of the Quasi-Stationary Stagnation Phase of Superdense Boron-Proton Plasma","authors":"Alexei Yu. Chirkov, Evgeny G. Vovkivsky","doi":"10.1007/s10894-025-00478-3","DOIUrl":null,"url":null,"abstract":"<div><p>The features of high-gain aneutronic p–<sup>11</sup>B fusion are examined. A comparison of inertial systems with extremely high plasma densities (<i>n</i> ~ 10<sup>30</sup>–10<sup>31</sup> m<sup>–3</sup>) and stationary systems with magnetic confinement of low-density plasma (<i>n</i> ~ 10<sup>20</sup>–10<sup>22</sup> m<sup>–3</sup>) shows that it is also necessary to analyze combined schemes based on magneto-inertial systems with fuel refill. Present work considers limiting modes of the quasi-stationary phase of fusion, which show the maximum plasma gain at plasma density <i>n</i> ~ 10<sup>31</sup> m<sup>–3</sup> and ion temperatures <i>T</i><sub><i>i</i></sub> ~ 200 keV, electron temperatures <i>T</i><sub><i>e</i></sub> ~ 100 keV at the beginning of the quasi-stationary phase. The content of reaction products (α-particles) has a significant influence on the parameters of the system. If the confinement time of α-particles is the same as for the fuel components, then due to radiation the energy gain <i>Q</i> ~ 1. In modes with a reduced confinement time of α-particles, the gain reaches a value of <i>Q</i> ~ 6. A further increase in <i>Q</i> requires extremely high plasma energy.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00478-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The features of high-gain aneutronic p–11B fusion are examined. A comparison of inertial systems with extremely high plasma densities (n ~ 1030–1031 m–3) and stationary systems with magnetic confinement of low-density plasma (n ~ 1020–1022 m–3) shows that it is also necessary to analyze combined schemes based on magneto-inertial systems with fuel refill. Present work considers limiting modes of the quasi-stationary phase of fusion, which show the maximum plasma gain at plasma density n ~ 1031 m–3 and ion temperatures Ti ~ 200 keV, electron temperatures Te ~ 100 keV at the beginning of the quasi-stationary phase. The content of reaction products (α-particles) has a significant influence on the parameters of the system. If the confinement time of α-particles is the same as for the fuel components, then due to radiation the energy gain Q ~ 1. In modes with a reduced confinement time of α-particles, the gain reaches a value of Q ~ 6. A further increase in Q requires extremely high plasma energy.
期刊介绍:
The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews.
This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.