Songlan Xie, Guohong Liu, Zaiyu Xiang, Zhaolin Liu, Zhengming Xiao, Bin Tang, Deqiang He
{"title":"Friction-Induced Stick–Slip Vibration Control via Composite Design of Surface Macro-Grooves and Micro-textures","authors":"Songlan Xie, Guohong Liu, Zaiyu Xiang, Zhaolin Liu, Zhengming Xiao, Bin Tang, Deqiang He","doi":"10.1007/s11249-025-01964-7","DOIUrl":null,"url":null,"abstract":"<div><p>Friction-induced stick–slip vibrations (FISSV) commonly occur in mechanical systems, posing risks to equipment like high-speed train brakes, causing instability, and threatening safety. To address this, we propose using textured surfaces of friction pairs to suppress FISSV. Through simulations on a friction testing machine, we explored the impact of surface texturing on FISSV. The results indicate that surface texturing significantly influences interfacial wear debris flow and contact characteristics, thereby regulating FISSV behavior. Textured surfaces better collect and store debris, reducing its involvement in friction and forming larger contact platform of metal substrate. This increases interface contact stiffness, preventing FISSV. A combination of macro-grooves and microtextures was particularly effective. Thus, appropriate surface texturing design can enhance system stability and reliability by effectively suppressing FISSV.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01964-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Friction-induced stick–slip vibrations (FISSV) commonly occur in mechanical systems, posing risks to equipment like high-speed train brakes, causing instability, and threatening safety. To address this, we propose using textured surfaces of friction pairs to suppress FISSV. Through simulations on a friction testing machine, we explored the impact of surface texturing on FISSV. The results indicate that surface texturing significantly influences interfacial wear debris flow and contact characteristics, thereby regulating FISSV behavior. Textured surfaces better collect and store debris, reducing its involvement in friction and forming larger contact platform of metal substrate. This increases interface contact stiffness, preventing FISSV. A combination of macro-grooves and microtextures was particularly effective. Thus, appropriate surface texturing design can enhance system stability and reliability by effectively suppressing FISSV.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.