Weidong Zhao
(, ), Mengfei Zheng
(, ), Hongyu Chu
(, ), Jingxuan Zhang
(, ), Kun Wang
(, ), Chenguang Yang
(, ), Na Shen
(, ), Zhaohui Tang
(, )
{"title":"An azo bond primary cleavage and C–C bond secondary cleavage-based polymeric β-lapachone prodrug for selective anti-cancer therapy","authors":"Weidong Zhao \n (, ), Mengfei Zheng \n (, ), Hongyu Chu \n (, ), Jingxuan Zhang \n (, ), Kun Wang \n (, ), Chenguang Yang \n (, ), Na Shen \n (, ), Zhaohui Tang \n (, )","doi":"10.1007/s40843-024-3185-6","DOIUrl":null,"url":null,"abstract":"<div><p>β-Lapachone (β-Lap) is a promising <i>ortho</i>-naphthoquinone drug for cancer treatment and has been in clinical trials. Its application is constrained by the low aqueous solubility, and severe side effects. Even prodrug designation is an effective approach to render it with tumor selectivity, it is limited by the lack of modifiable groups on β-Lap. Herein, a novel azo bond primary cleavage and carbon–carbon (C–C) bond secondary cleavage-based polymeric β-Lap prodrug (Azo-Lap NP) is designed, in which the self-immolated <i>para</i>-aminobenzyl linker is connected to poly(<span>l</span>-glutamic acid) (PGlu) via azo linkage and the responsive drug release of β-Lap against tumors can be achieved under high NAD(P)H:quinone oxidoreductase 1 (NQO1) expression and low pH environment in tumors. The effective covalent loading of β-Lap by Azo-Lap NPs permitted a high administration dose of β-Lap and enabled significant tumor retention time. Moreover, Azo-Lap NPs markedly reduced the side effects of β-Lap by avoiding hemolysis and the production of methemoglobin. The safety of Azo-Lap NPs administration is validated in the antitumor experiment of mice. In the 4T1 model, Azo-Lap NPs exhibited a markedly higher tumor suppression rate than β-Lap. This work provides an effective and safe polymeric prodrug for tumor selective delivery of β-Lap.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"640 - 651"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3185-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
β-Lapachone (β-Lap) is a promising ortho-naphthoquinone drug for cancer treatment and has been in clinical trials. Its application is constrained by the low aqueous solubility, and severe side effects. Even prodrug designation is an effective approach to render it with tumor selectivity, it is limited by the lack of modifiable groups on β-Lap. Herein, a novel azo bond primary cleavage and carbon–carbon (C–C) bond secondary cleavage-based polymeric β-Lap prodrug (Azo-Lap NP) is designed, in which the self-immolated para-aminobenzyl linker is connected to poly(l-glutamic acid) (PGlu) via azo linkage and the responsive drug release of β-Lap against tumors can be achieved under high NAD(P)H:quinone oxidoreductase 1 (NQO1) expression and low pH environment in tumors. The effective covalent loading of β-Lap by Azo-Lap NPs permitted a high administration dose of β-Lap and enabled significant tumor retention time. Moreover, Azo-Lap NPs markedly reduced the side effects of β-Lap by avoiding hemolysis and the production of methemoglobin. The safety of Azo-Lap NPs administration is validated in the antitumor experiment of mice. In the 4T1 model, Azo-Lap NPs exhibited a markedly higher tumor suppression rate than β-Lap. This work provides an effective and safe polymeric prodrug for tumor selective delivery of β-Lap.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.